98%
921
2 minutes
20
Ligand functionalization is a powerful approach for modifying the electronic structure of metal-organic frameworks when targeting the optimal electronic properties for photocatalysis and photovoltaics. However, its effect on the charge carrier lifetimes and recombination pathways remains unexplored. In this work, first-principles simulations, including nonadiabatic molecular dynamics, are performed for the representative TiO-based metal-organic framework systems MIL-125-X to unravel the impact of ligand functionalization on the nonradiative electron-hole recombination process, decoherence rates, and phonon modes giving the largest contribution to the nonradiative decay. Nonradiative recombination rates, simulated using the PBE0 density functional, are in excellent agreement with experiment. The ligand functionalization in MIL-125-X influences the recombination rates, unraveling the trend opposite to the evolution of the band gap and affecting the nonadiabatic coupling coefficients. Ligand modification impacts the phonon modes, which contribute most to the recombination process, altering the distribution between soft phonon modes and vibrational modes associated with specific structural motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c03634 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address:
The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States.
Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.
View Article and Find Full Text PDFAm J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDF