98%
921
2 minutes
20
Being a major staple food crop of the world, wheat provides nutritional food security to the global populations. Heat stress is a major abiotic stress that adversely affects wheat production throughout the world including Indo-Gangatic Plains (IGP) where four wheat growing countries viz., India, Bangladesh, Nepal and Pakistan produce 42% of the total wheat production. Therefore, identification of heat stress responsive molecular markers is imperative to marker assisted breeding programs. Information about trait specific gene based SSRs is available but there is lack of information on SSRs from non-coding regions. In the present study, we developed 177 heat-responsive gene-based SSRs (cg-SSR) and MIR gene-based SSR (miRNA-SSR) markers from wheat genome for assessing genetic diversity analysis of thirty- six contrasting wheat genotypes for heat tolerance. Of the 177 SSR loci, 144 yielded unambiguous and repeatable amplicons, however, thirty-seven were found polymorphic among the 36 wheat genotypes. The polymorphism information content (PIC) of primers used in this study ranged from 0.03-0.73, with a mean of 0.35. Number of alleles produced per primer varied from 2 to 6, with a mean of 2.58. The UPGMA dendrogram analysis grouped all wheat genotypes into four clusters. The markers developed in this study has potential application in the MAS based breeding programs for developing heat tolerant wheat cultivars and genetic diversity analysis of wheat germplasm. Identification of noncoding region based SSRs will be fruitful for identification of trait specific wheat germplasm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-020-06059-1 | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFGenome Biol
September 2025
Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.
Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.
View Article and Find Full Text PDFBMC Mol Cell Biol
September 2025
School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDFEMBO J
September 2025
School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.
View Article and Find Full Text PDF