Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent chemicals widely detected in women of reproductive age. Prenatal PFAS exposure is associated with adverse health outcomes in children. We hypothesized that DNA methylation changes may result from prenatal PFAS exposure and may be linked to offspring cardio-metabolic phenotype.

Objectives: We estimated associations of prenatal PFAS with DNA methylation in umbilical cord blood. We evaluated associations of methylation at selected sites with neonatal cardio-metabolic indicators.

Methods: Among 583 mother-infant pairs in a prospective cohort, five PFAS were quantified in maternal serum (median 27 wk of gestation). Umbilical cord blood DNA methylation was evaluated using the Illumina HumanMethylation450 array. Differentially methylated positions (DMPs) were evaluated at a false discovery rate and differentially methylated regions (DMRs) were identified using comb-p (Šidák-adjusted ). We estimated associations between methylation at candidate DMPs and DMR sites and the following outcomes: newborn weight, adiposity, and cord blood glucose, insulin, lipids, and leptin.

Results: Maternal serum PFAS concentrations were below the median for females in the U.S. general population. Moderate to high pairwise correlations were observed between PFAS concentrations (). Methylation at one DMP (cg18587484), annotated to the gene , was associated with perfluorooctanoate (PFOA) at . Comb-p detected between 4 and 15 DMRs for each PFAS. Associated genes, some common across multiple PFAS, were implicated in growth (), lipid homeostasis (, , , ), inflammation and immune activity (, ), among other functions. There was suggestive evidence that two PFAS-associated loci (cg09093485, cg09637273) were associated with cord blood triglycerides and birth weight, respectively ().

Discussion: DNA methylation in umbilical cord blood was associated with maternal serum PFAS concentrations during pregnancy, suggesting potential associations with offspring growth, metabolism, and immune function. Future research should explore whether DNA methylation changes mediate associations between prenatal PFAS exposures and child health outcomes. https://doi.org/10.1289/EHP6888.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759236PMC
http://dx.doi.org/10.1289/EHP6888DOI Listing

Publication Analysis

Top Keywords

cord blood
24
dna methylation
24
umbilical cord
16
prenatal pfas
16
maternal serum
12
pfas concentrations
12
pfas
11
methylation
9
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8

Similar Publications

The aim of this study was to investigate three unrelated Simmental calves with atypical white coat color, identify potential genetic causes using a trio-based whole-genome sequencing approach, and assess the prevalence of the identified variants in the breed. Several inherited alleles affecting coat color, ranging from fawn to red spotted and white-headed, have been described in Simmental cattle originating from Switzerland. However, no genetic variant has yet been associated with an almost completely white coat in this breed.

View Article and Find Full Text PDF

46,XY/46,XY Chimerism: Prenatal Presentation and Postnatal Outcome.

Mol Genet Genomic Med

September 2025

Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada.

Background: Human chimerism is rare, and most prevalent with discordant chromosomal sex. We report a male 46,XY/46,XY chimera, born through a spontaneously conceived pregnancy to a healthy 32-year-old G1P0 Indian, African, and Scottish female and her 34-year-old healthy Chinese partner. The prenatal presentation and postnatal outcomes are described.

View Article and Find Full Text PDF

Corynebacterium amycolatum: an underestimated pathogen in early-onset neonatal sepsis-a case report.

BMC Infect Dis

September 2025

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No.20, Section 3, Renmin South Road, Chengdu, Sichuan, 610041, P.R. China.

Background: Early-onset neonatal sepsis (EOS) is a critical condition primarily caused by maternal-fetal transmission of bacterial pathogens during delivery, with Escherichia coli and Group B Streptococcus being the most prevalent. However, neonatal sepsis can also involve other rare bacteria, including Corynebacterium amycolatum, which was first described in 1988 and is widely recognized as an emerging pathogen in infectious diseases.

Case Presentation: A male infant was admitted to the neonatal intensive care unit (NICU) due to premature birth and tachypnea.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system, often resulting in partial or complete loss of sensory and motor functions. Ferroptosis, a lipid peroxidation-driven apoptotic process triggered by iron overload, has emerged as a novel form of programmed cell death and a focal point in post-SCI cell death research. Exosomes (Exo), as delivery vehicles, exhibit multiple advantages, including superior encapsulation capacity, high targeting efficiency, and enhanced blood-brain barrier penetration to reach the central nervous system.

View Article and Find Full Text PDF

Excess testosterone (T) exposure from early to mid-gestation (days 30-90) leads to sexually dimorphic adverse cardiac left ventricular (LV) programming at fetal day 90 (term 147 days). Whether this sexually dimorphic impact is a direct effect of T or reprogramming that persists beyond early fetal life is unknown. We hypothesized that adverse sex-specific cardiac outcomes seen in early fetal life will persist in late gestational fetuses.

View Article and Find Full Text PDF