98%
921
2 minutes
20
Neurodegenerative disease is caused by the abnormal build-up of proteins in and around cells called amyloid. The amyloid fibril formation and its mechanism have been investigated with various techniques, including dye-binding assay. Thioflavin T (ThT) has been one of the most widely used dyes for quantifying amyloid deposits, but ThT has a weak fluorescence signal especially at low concentration of amyloid fibrils, low lipophilicity and positive charge that makes it unable to cross the blood-brain barrier (BBB) to detect amyloid fibrils in vivo. Hence, there is a strong motivation for designing and developing the new compounds for in vitro amyloid quantification and in vivo amyloid imaging. The need for new probes to detect amyloid fibrils, especially within the cell, is highlighted by the fact that an accurate understanding of the molecular details of amyloid fibril formation is required to design and develop strategies for controlling the amyloid formation, and this needs more reliable probes for amyloid identification. In this work, we synthesized and applied barbituric and thiobarbituric acid-based chromene derivatives, as new fluorescent dyes to quantitatively detect the amyloid fibrils of bovine serum albumin (BSA) and human insulin in comparison with native soluble proteins or amorphous aggregation. Our results showed that among the 14 synthesized compounds, five compounds 4a, 4h, 4j, 4k, and 4l could selectively and specifically bind to amyloid fibrils while other compounds demonstrated a low-affinity binding. Furthermore, according to the cell viability experiment, compounds 4a, 4j and 4l at low concentration of compounds are not toxic, especially compound 4j which could be used as a suitable candidate for in vivo study. Further studies are needed to determine all the properties of compounds, especially in vivo experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2020.106522 | DOI Listing |
Acta Neuropathol Commun
September 2025
Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.
Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.
View Article and Find Full Text PDFNat Aging
September 2025
Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
Clinical Alzheimer's disease is currently characterized by cerebral β-amyloidosis associated with cognitive impairment. However, most cases of Alzheimer's disease are associated with multiple neuropathologies at autopsy. The peripheral protein changes associated with these disease endophenotypes are poorly understood.
View Article and Find Full Text PDFNat Aging
September 2025
Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Aging is a major risk factor for various neurological disorders, including Alzheimer's disease, and is associated with the accumulation of senescent cells, which can themselves propagate the senescence process through paracrine signaling. Migrasomes are organelles that form during cellular migration, detach from parent cells and mediate intercellular communication. Here we demonstrate that border-associated macrophages (BAMs) acquire senescence-associated properties during early brain aging, possibly due to prolonged exposure to amyloid beta.
View Article and Find Full Text PDFNature
September 2025
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.
View Article and Find Full Text PDFTrends Biochem Sci
September 2025
Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA. Electronic address:
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene, resulting in an expanded polyglutamine (polyQ) tract in HTT protein. Expanded polyQ tracts cause mutant HTT (mHTT) to aggregate and accumulate as cellular inclusions. Recent studies highlight the interactions between mHTT and different cellular membranes that contribute to HD pathogenesis.
View Article and Find Full Text PDF