98%
921
2 minutes
20
Every year, large quantities of stems and pits are generated during sweet cherry processing, without any substantial use. Although stems are widely recognized by traditional medicine, detailed and feasible information about their bioactive composition or biological value is still scarce, as well as the characterization of kernels. Therefore, we conducted a study in which bioactivity potential of extracts from stems and kernels of four sweet cherry cultivars ( (grown under net cover (C) and without net cover (NC)), , and ) were examined. The assays included antioxidant (by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid bleaching assays), and antibacterial activities against important Gram negative and Gram positive bacterial human isolates. Profile and individual phenolic composition of each extract were determined by High-performance liquid chromatography (HPLC) analysis. Extracts from stems of cv. and kernels of NC presented high levels of total phenolics, flavonoids, -diphenols and saponins. Excepting for cv. NC, major phenolic compounds identified in stems and kernels were sakuranetin and catechin, respectively. In cv. NC the most abundant compounds were ellagic acid for stems and protocatechuic acid for kernels. In all extracts, antioxidant activities showed a positive correlation with the increments in phenolic compounds. Antimicrobial activity assays showed that only stem's extracts were capable of inhibiting the growth of Gram positive isolates. This new data is intended to provide new possibilities of valorization of these by-products and their valuable properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766571 | PMC |
http://dx.doi.org/10.3390/antiox9121295 | DOI Listing |
Food Res Int
November 2025
SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. Electronic address:
Fungal toxin contamination presents significant hazards to agroecosystems and food safety. Penicillium expansum (P. expansum) emerges as a primary threat, damaging sweet cherries through spoilage and generating the hazardous mycotoxin patulin (PAT).
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Global warming poses significant challenges to plant physiology, particularly affecting bud dormancy and fruit yields in perennial fruit trees. JMJ-C domain containing histone demethylases, a family of enzymes that modulate gene expression by removing methyl groups from histone tails, have been the subject of extensive research in model plants like Arabidopsis and tomato. However, their functions in fruit trees, remains largely unexplored.
View Article and Find Full Text PDFFood Chem
August 2025
Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany. Electronic address:
Ultrasound-assisted acid-catalyzed hydrolysis produced moderately elongated, rod-like cellulose nanocrystals (CNCs) from bleached cellulosic fibrils of sweet cherry stalks (SCSs). Ultra-white SCS-derived CNCs, with desired hydrophilicity were 327.1 nm particles with a ζ-potential of -34.
View Article and Find Full Text PDFACS Omega
August 2025
School of Art, Changsha Social Work College, Changsha 410000, China.
Postharvest fruit losses are largely driven by a short shelf-life resulting from ethylene-induced ripening, microbial spoilage, and moisture loss. In this study, a multifunctional coating was fabricated on Moso bamboo substrates via a simple two-step process. The coating integrates superhydrophobic, ethylene-scavenging, and antibacterial functions, utilizing rosin, nano-ZnO, powder, nano-CaCO, and KMnO.
View Article and Find Full Text PDFMolecules
July 2025
Department of Chemical and Food Engineering, "Vasile Alecsandri" University of Bacau, 157 Marasesti Str., 600115 Bacau, Romania.
The resulting plant waste from , , , and exhibits a complex chemical composition, depending on the variety from which it originates, with applications in multiple fields such as the food, pharmaceutical or dermato-cosmetic industry due to the presence of phytochemical compounds such as flavonoids, flavonols, tannins, cyanogenic glycosides, vitamins, aldehyde, and phenolic acids. The aim of this review was to summarize and analyze the most recent and significant data from literature on the importance of plant waste resulting from the pruning process of trees and shrubs, in the context of applying circular economy principles, with a focus on the pharmacological importance (antimicrobial, antioxidant, anti-inflammatory, anticoagulant, antiviral, and antitumoral) of some bioactive compounds identified in these species. Their applicability in various industries is closely linked to both the bioavailability of the final products and the study of their toxicity.
View Article and Find Full Text PDF