Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15140DOI Listing

Publication Analysis

Top Keywords

ph1 locus
16
wheat rye
8
ph1
8
homologous ph1
8
homoeologous crossovers
8
dna sequence
8
homoeologous
7
wheat
5
crossovers
5
characteristics crossing
4

Similar Publications

An RGAE Homolog in Is Critical for Initial Infection in Wheat and Barley.

Mol Plant Microbe Interact

May 2025

USDA-ARS-NCAUR, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, Illinois, United States;

is the primary causal agent of Fusarium head blight (FHB), a devastating fungal disease on wheat, barley, and other grains. During infection, produces trichothecene mycotoxins, predominately deoxynivalenol (DON), which contaminate grain and reduce grain yield and quality. Although DON functions as a virulence factor to promote spread in the wheat head, it is not essential for establishing initial infection in wheat or barley.

View Article and Find Full Text PDF

Proper spatiotemporal expression of meiosis-related genes (MRGs) and other male-microsporogenesis/microgametogenesis-related genes (MMRGs) is crucial for normal anther development, yet their expression patterns remain largely unknown in wheat. The Ph1 locus in wheat is known to contain the Ph1 gene that plays a dual role in promoting pairing between homologous chromosomes but repressing pairing between homoeologous chromosomes, but its genetic function is still unclear. Here, we investigated these issues by conducting a comprehensive transcriptome analysis during wheat anther development in Chinese Spring (CS) and its ph1b deletion mutant under greenhouse and field conditions.

View Article and Find Full Text PDF

Dual Mechanisms of Salinity Tolerance in Wheat Germplasm Lines W4909 and W4910.

Int J Mol Sci

November 2024

Forage & Range Research Laboratory, USDA-ARS, Logan, UT 84322-6300, USA.

Soil salinity adversely affects plant growth and development, reducing the yield of most crops, including wheat. The highly salt-tolerant wheat germplasm lines W4909 and W4910 were derived from a cross between two moderately salt-tolerant lines, the Chinese Spring (CS)/ disomic addition line AJDAj5 (AJ) and the Ph-inhibitor line (Ph-I) derived from CS/. Molecular markers for gene introgressions in W4909 and W4910 were not reported.

View Article and Find Full Text PDF
Article Synopsis
  • The Ph1 locus in polyploid wheat prevents crossing over between homoeologous chromosomes during meiotic metaphase I, maintaining bivalent behavior.
  • It also influences the pairing and crossing over of homologous chromosomes, and its effects can vary based on the number of doses present.
  • Results showed that with a single dose of Ph1, crossover rates were 37% higher than with two doses and 46.4% lower than with no doses, indicating Ph1 operates in a dosage-dependent manner.
View Article and Find Full Text PDF

Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton.

Mol Plant

October 2024

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou U

Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton.

View Article and Find Full Text PDF