A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects and Mechanisms of Grinding Media on the Flotation Behavior of Scheelite. | LitMetric

Effects and Mechanisms of Grinding Media on the Flotation Behavior of Scheelite.

ACS Omega

School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grinding, an essential procedure for size reduction and fresh surface exposure of mineral particles, plays an important role in mineral flotation. The grinding media are the key factors for effective grinding and thus for successful flotation. In this study, ceramic ball (CB) and cast iron ball (CIB), two representative grinding media, were chosen to investigate the effects and mechanisms of grinding media on the flotation behavior of scheelite. The results of pure scheelite flotation show that scheelite ground by CB has a better floatability than that ground by CIB. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicate that there are Fe species, namely, elemental iron (Fe), ferrous oxide (FeO), and iron oxyhydroxide (FeOOH), coated on the surfaces of scheelite ground by CIB but not in the case of scheelite ground by CB. The dissolved oxygen (DO) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) tests show that Fe ions exist in the CIB grinding slurry but not in the case of CB grinding slurry. Compared with the CB grinding slurry, the CIB grinding slurry has a lower DO content and higher Ca ion concentration. Zeta potential results reveal that the Fe species in the CIB grinding reduce the NaOl adsorption on the scheelite surfaces. Finally, the deleterious effect of CIB grinding on the flotation behavior of scheelite is verified by the actual scheelite ore flotation experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745414PMC
http://dx.doi.org/10.1021/acsomega.0c05104DOI Listing

Publication Analysis

Top Keywords

grinding media
16
cib grinding
16
grinding slurry
16
grinding
12
flotation behavior
12
behavior scheelite
12
scheelite ground
12
scheelite
9
effects mechanisms
8
mechanisms grinding
8

Similar Publications