Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anthropogenic lead (Pb) contamination resulting from the rapid growth of industrialization in coastal environments poses significant challenges. In this study, we report a novel approach utilising the large benthic foraminifera Amphisorus hemprichii as a biogeochemical archive for monitoring Pb pollution in tropical to warm-temperate coastal waters. Live juvenile specimens of A. hemprichii were cultured in the laboratory for 16 weeks with a range of seawater Pb concentrations. Lead uptake in both newly grown and pre-existing chambers of individual specimens was characterised using the microanalytical technique, Laser ablation-ICP mass spectrometry. We found that Pb concentration in the tests of cultured foraminifera in the laboratory is proportional to seawater [Pb] with the lead partition coefficient (K) of 8.37 ± 0.3. This calibration together with a new biomineralisation model now enables A. hemprichii to be utilised as a naturally occurring bio-archive to quantitatively monitor anthropogenic Pb pollution in coastal waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2020.111918DOI Listing

Publication Analysis

Top Keywords

large benthic
8
benthic foraminifera
8
foraminifera amphisorus
8
amphisorus hemprichii
8
pollution coastal
8
coastal environments
8
coastal waters
8
geochemistry large
4
hemprichii
4
hemprichii high-resolution
4

Similar Publications

Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.

View Article and Find Full Text PDF

The distribution characteristics of marine litter in the intertidal zone of Lvhua Island and its impact on the macrobenthic community structure.

Mar Environ Res

September 2025

College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Engineering Technology Research Center of Marine Ranching, Shanghai Ocean University, Shanghai, 201306, China; Comprehensive Workstation for Marine Ranching in the East China Sea Region, Expert Consul

Marine litter typically originates from human discards at sea or enters the ocean through land-based pathways such as surface runoff and natural disasters. The extensive accumulation of plastic litter poses severe threats to marine life. In August 2024, a specialized survey was conducted to investigate the distribution characteristics of marine litter and macrobenthic communities across four intertidal zones on Lvhua Island (XIAO'AO, DA'AO, FANGANG, and SHIZIKENG).

View Article and Find Full Text PDF

Trophic transfer of CeO nanoparticles from clamworm to juvenile turbot and related changes in fish flesh quality.

Eco Environ Health

September 2025

Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.

Engineered nanoparticles (ENPs) accumulate in marine sediments and exhibit adverse effects on benthic organisms. However, the effect of ENPs on marine benthic food chains is largely unknown. Herein, we investigated the trophic transfer and transformation of CeO ENPs within a simulated marine benthic food chain from clamworm () to turbot (), as well as their effects on fish flesh quality.

View Article and Find Full Text PDF

Dense aggregations of species in the family Pinnidae give soft substrata a specific characterization. They may influence the biological and physical properties of the surrounding sediments. Bottom-trawl samplings performed in the Sea of Marmara revealed populations of a large pinnid species, particularly at depths of 40-45 m in soft substrata.

View Article and Find Full Text PDF

In this study, we trained an object-detection model to classify 17 benthic invertebrate taxa in archived footage of a study site on the northern west coast of Sweden (a wall section of the Koster Fjord) within the Swedish marine protected area Kosterhavet National Park. The model displayed a mean average precision score of 0.738 and was applied to footage from 1997 to 2023, generating a dataset of 72,369 occurrence records.

View Article and Find Full Text PDF