Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CT scan by use of a beam-filter placed between the x-ray source and the patient allows a single-scan low-dose dual-energy imaging with a minimal hardware modification to the existing CT systems. We have earlier demonstrated the feasibility of such imaging method with a multi-slit beam-filter reciprocating along the direction perpendicular to the CT rotation axis in a cone-beam CT system. However, such method would face mechanical challenges when the beam-filter is supposed to cooperate with a fast-rotating gantry in a diagnostic CT system. In this work, we propose a new scanning method and associated image reconstruction algorithm that can overcome these challenges. We propose to slide a beam-filter that has multi-slit structure with its slits being at a slanted angle with the CT gantry rotation axis during a scan. A streaky pattern would show up in the sinogram domain as a result. Using a notch filter in the Fourier domain of the sinogram, we removed the streaks and reconstructed an image by use of the filtered-backprojection algorithm. The remaining image artifacts were suppressed by applying l norm based smoothing. Using this image as a prior, we have reconstructed low- and high-energy CT images in the iterative reconstruction framework. An image-based material decomposition then followed. We conducted a simulation study to test its feasibility using the XCAT phantom and also an experimental study using the Catphan phantom, a head phantom, an iodine-solution phantom, and a monkey in anesthesia, and showed its successful performance in image reconstruction and in material decomposition.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3044357DOI Listing

Publication Analysis

Top Keywords

low-dose dual-energy
8
dual-energy imaging
8
imaging method
8
rotation axis
8
image reconstruction
8
material decomposition
8
image
5
novel low-dose
4
method
4
method fast-rotating
4

Similar Publications

Background: Stroke, frequently associated with carotid artery disease, is evaluated using carotid computed tomography angiography (CTA). Dual-energy CTA (DE-CTA) enhances imaging quality but presents challenges in maintaining high image clarity with low-dose scans.

Objectives: To compare the image quality of 50 keV virtual monoenergetic images (VMI) generated using Deep Learning Image Reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-V (ASIR-V) algorithms under a triple-low scanning protocol in carotid CTA.

View Article and Find Full Text PDF

Optimization of carotid CT angiography image quality with deep learning image reconstruction with high setting (DLIR-H) algorithm under ultra-low radiation and contrast agent conditions.

Radiography (Lond)

September 2025

Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Jiangsu Provincial Engineering Research Center for Medical Imaging and Digital Medicine, Xuzhou, Jiangs

Introduction: Carotid artery disease is a major cause of stroke and is frequently evaluated using Carotid CT Angiography (CTA). However, the associated radiation exposure and contrast agent use raise concerns, particularly for high-risk patients. Recent advances in Deep Learning Image Reconstruction (DLIR) offer new potential to enhance image quality under low-dose conditions.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging of polymer gel dosimeters remains the de facto standard to obtain high-quality dose information. However, magnetic resonance imaging scanner access is limited and scan times are long. x-Ray computed tomography-based polymer gel dosimeters (XCT-PGDs) offer convenience owing to easier access to CT scanners, especially cone-beam CT (CBCT) scanners integrated with linear accelerators, although they suffer from low dose resolution and high noise sensitivity.

View Article and Find Full Text PDF

Performance of Dual-Layer Flat-Panel Detectors.

Diagnostics (Basel)

July 2025

Division of Semiconductor and Electronics Engineering, Hankuk University of Foreign Studies, Yongin-si 17035, Gyeonggi-do, Republic of Korea.

In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also enable more efficient use of incident photons, resulting in x-ray images with improved noise power spectrum (NPS) and detection quantum efficiency (DQE) performances as single-energy applications. Purpose: Although the development of DFD systems for material decomposition applications is actively underway, there is a lack of research on whether single-energy applications of DFD can achieve better performance than the single-layer case.

View Article and Find Full Text PDF

Three-dimensional (3D) dental imaging, such as cone-beam computed tomography (CBCT), is essential for diagnosing dental conditions but is limited by high costs, prolonged examination times, and increased radiation exposure. Additionally, standard CBCT lacks the ability to capture spectral X-ray information, which is crucial for distinguishing different dental materials. To address these issues, we propose a novel, to the best of our knowledge, low-cost, low-dose dental CT method, chromatic X-ray stationary intraoral computed tomography (S-IDECT), which integrates a multisource X-ray array with dual-energy CT technology.

View Article and Find Full Text PDF