Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Stroke, frequently associated with carotid artery disease, is evaluated using carotid computed tomography angiography (CTA). Dual-energy CTA (DE-CTA) enhances imaging quality but presents challenges in maintaining high image clarity with low-dose scans.

Objectives: To compare the image quality of 50 keV virtual monoenergetic images (VMI) generated using Deep Learning Image Reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-V (ASIR-V) algorithms under a triple-low scanning protocol in carotid CTA.

Methods: A prospective study was conducted with 120 patients undergoing DE-CTA. The control group (Group 1), with a noise index (NI) of 4.0 and a contrast agent dose of 0.5 mL/kg, used the ASIR-V algorithm. The experimental group was divided into four subgroups: Group 2 (ASIR-V 50%), Group 3 (DLIR-L), Group 4 (DLIR-M), and Group 5 (DLIR-H), with a higher NI of 13.0 and a reduced contrast agent dose of 0.4 mL/kg. Objective image quality was assessed through signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and standard deviation (SD), while subjective quality was evaluated using a 5-point Likert scale. Radiation dose and contrast agent volume were also measured.

Results: The triple-low scanning protocol reduced radiation exposure by 53.2%, contrast agent volume by 19.7%, and injection rate by 19.8%. The DLIR-H setting outperformed ASIR-V, demonstrating superior image quality, better noise suppression, and improved contrast in small vessels. VMI at 50 keV showed enhanced diagnostic clarity with minimal radiation and contrast agent usage.

Conclusion: The DLIR algorithm, particularly at high settings, significantly enhances image quality in DE-CTA VMI under a triple-low scanning protocol, offering a better balance between radiation dose reduction and image clarity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11604-025-01866-7DOI Listing

Publication Analysis

Top Keywords

contrast agent
20
image quality
16
triple-low scanning
12
scanning protocol
12
asir-v algorithms
8
virtual monoenergetic
8
image clarity
8
agent dose
8
radiation dose
8
agent volume
8

Similar Publications

Assessing adult zebrafish despair-like behaviors in the small vertical cylinder immobility test (VCIT).

J Neurosci Methods

September 2025

Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.

Background: Affective disorders represent a major global health burden. Animal models are widely used for modeling brain disorders and neuroactive drug discovery. A novel powerful tool in translational neuroscience research, zebrafish provide multiple behavioral assays relevant to anxiety-like and depression-related conditions (including despair-like behavior, a common feature in depression).

View Article and Find Full Text PDF

Objective: To determine optimal CT perfusion (CTP) imaging parameters for evaluating the canine prostate and to assess the diagnostic utility of CTP combined with cytopathologic evaluation and B-Raf proto-oncogene (BRAF) gene mutation testing in dogs with prostate adenocarcinoma.

Methods: For this study, 10 male dogs were enrolled, comprising 4 healthy Beagles and 6 client-owned dogs with suspected prostatic neoplasia. Computed tomography perfusion was performed in the healthy dogs using varied contrast agent doses and injection durations.

View Article and Find Full Text PDF

In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media.

View Article and Find Full Text PDF

Background: Stroke, frequently associated with carotid artery disease, is evaluated using carotid computed tomography angiography (CTA). Dual-energy CTA (DE-CTA) enhances imaging quality but presents challenges in maintaining high image clarity with low-dose scans.

Objectives: To compare the image quality of 50 keV virtual monoenergetic images (VMI) generated using Deep Learning Image Reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-V (ASIR-V) algorithms under a triple-low scanning protocol in carotid CTA.

View Article and Find Full Text PDF

Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.

View Article and Find Full Text PDF