Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleosomes are substrates for a broad range of factors, including those involved in transcription or chromosome maintenance/reorganization and enzymes that covalently modify histones. Given the heterogeneous nature of nucleosomes in vivo (i.e., varying histone composition, post-translational modifications, DNA sequence register), understanding the specificity and activities of chromatin-interacting factors has required in vitro studies using well-defined nucleosome substrates. Here, we provide detailed methods for large-scale PCR preparation of DNA, assembly of nucleosomes from purified DNA and histones, and purification of DNA and mononucleosomes. Such production of well-defined nucleosomes for biochemical and biophysical studies is key for studying numerous proteins and protein complexes that bind and/or alter nucleosomes and for revealing inherent characteristics of nucleosomes. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Large-scale PCR amplification of DNA Basic Protocol 2: DNA and nucleosome purification using a Bio-Rad Mini Prep Cell/Prep Cell Basic Protocol 3: Nucleosome reconstitution via linear gradient salt dialysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735289PMC
http://dx.doi.org/10.1002/cpmb.130DOI Listing

Publication Analysis

Top Keywords

basic protocol
12
purified dna
8
large-scale pcr
8
nucleosomes
7
dna
7
reconstitution purification
4
purification nucleosomes
4
nucleosomes recombinant
4
recombinant histones
4
histones purified
4

Similar Publications

Endothelial cell-ILC3 crosstalk via the ET-1/EDNRA axis promotes NKp46ILC3 glycolysis to alleviate intestinal inflammation.

Cell Mol Immunol

September 2025

Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua

Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).

View Article and Find Full Text PDF

Animal models of obesity.

Methods Cell Biol

September 2025

Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile. Electronic address:

Obesity is a multifactorial disease characterized by excessive accumulation of adipose tissue, resulting from an imbalance between energy intake and expenditure. Mouse models have emerged as invaluable tools for elucidating the complex genetic, environmental, and physiological mechanisms driving to obesity. This chapter provides an overview of the methodologies employed to establish and study obesity in mice, highlighting their relevance to human disease.

View Article and Find Full Text PDF

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Objective: To analyze the use of teledentistry in Primary Healthcare in Brazil at the end of the second year of the COVID-19 pandemic.

Methods: Cross-sectional study with dentists and dental surgeons in Primary Healthcare. Study data were obtained through an online form.

View Article and Find Full Text PDF

The aim of this in-vitro study was to verify which field of view (FOV) in cone-beam computed tomography (CBCT) yields greater accuracy in the detection of internal root resorption (IRR) volume, in comparison to the gold standard of micro-computed tomography (micro-CT) and to a physical method. Twenty-five extractedsingle-rooted teeth were scanned by CBCT with two different FOV parameters (6x6-FOV and 10x10-FOV) and via micro-CT. The volume of dental hard tissue was measured on these images.

View Article and Find Full Text PDF