98%
921
2 minutes
20
Thyroglobulin (Tg) is a significant biomarker for the diagnose and postoperative monitoring of differentiated thyroid cancer, and its recognition is urgent due to the rising prevalence. In this study, an ssDNA aptamer against Tg was obtained by capillary electrophoresis-systematic evolution of ligands via exponential enrichment (CE-SELEX). Under the optimized conditions, the sub-library was enriched well through two selection rounds. After high-throughput sequencing, eight candidate sequences were picked out and their affinities towards Tg were observed not in accordance with the order of their frequencies, whereas sequence homology played a significant role in binding affinity. The high-affinity sequence Seq.T-2 with a dissociation constant (K) of 3.18 μM was finally selected as the aptamer, and its affinity was confirmed qualitatively by gold nanoparticles colorimetric and quantitatively by thin film interferometry (K, 4.51 nM). Besides, molecular docking and dynamics simulation were performed for their binding sites prediction and affinity confirmation. Furthermore, the aptamer was applied for Tg detection, which delivered a detection limit of 5.0 nM as well as with good selectivity, and showed a good linear relationship within a wide range of 10 nM-6.4 μM of Tg spiked into the serum matrix. This study first reported Tg's aptamer which also exhibited the potential in real applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121690 | DOI Listing |
Adv Drug Deliv Rev
September 2025
Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua
Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:
Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Label-free fluorescent binding assays employing DNA staining dyes as probes are widely adopted techniques in the aptamer field. While many dyes have been used, thioflavin T (ThT) did not receive much attention for this purpose until recently, since it has long been perceived primarily as a G-quadruplex staining dye. Based on recent studies, ThT appears to serve as a reliable probe for evaluating the binding of non-G-quadruplex aptamers, and we seek to clarify the underlying mechanisms responsible for the exceptional performance of ThT.
View Article and Find Full Text PDFBiosens Bioelectron
December 2025
Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China. Electronic address:
5-Methyltetrahydrofolate (5-MTHF), the primary bioactive form of folate (vitamin B9), played a vital role in human metabolism. In this work, an electrochemical/colorimetric dual-mode aptasensor for 5-MTHF was constructed by combining a DNA Walker-driven CRISPR-Cas12a trans-cleavage system. A 5-MTHF aptamer D1a was obtained through Capture-SELEX with subsequent trimming of non-binding regions, which exhibiting high affinity and specificity.
View Article and Find Full Text PDFPlant Biotechnol J
August 2025
Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Botrytis cinerea, the necrotrophic fungus responsible for grey mould disease, is a major threat to global crop production. Control strategies mainly rely on chemical fungicides, but resistance development limits their long-term effectiveness. This study introduces, for the first time in crop protection, the use of DNA aptamers as a novel and sustainable strategy.
View Article and Find Full Text PDF