Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleocapsid protein (N) is the most abundant viral protein encoded by SARS-CoV-2, the causative agent of COVID-19. N plays key roles at different steps in the replication cycle and is used as a serological marker of infection. Here we characterize the biochemical properties of SARS-CoV-2 N. We define the N domains important for oligomerization and RNA binding that are associated with spherical droplet formation and suggest that N accessibility and assembly may be regulated by phosphorylation. We also map the RNA binding interface using hydrogen-deuterium exchange mass spectrometry. Finally, we find that the N protein C-terminal domain is the most immunogenic by sensitivity, based upon antibody binding to COVID-19 patient samples from the US and Hong Kong. Together, these findings uncover domain-specific insights into the significance of SARS-CoV-2 N and highlight the diagnostic value of using N domains as highly specific and sensitive markers of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709165PMC
http://dx.doi.org/10.1101/2020.11.30.404905DOI Listing

Publication Analysis

Top Keywords

c-terminal domain
8
rna binding
8
characterization sars-cov-2
4
protein
4
sars-cov-2 protein
4
protein reveals
4
reveals multiple
4
multiple functional
4
functional consequences
4
consequences c-terminal
4

Similar Publications

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

A Novel Homozygous Nonsense Pathogenic Variant of the CPAMD8 Gene Associated With Congenital Microcoria.

Clin Genet

September 2025

Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, Heilongjiang Province, People's Republic of China.

Congenital microcoria (MCOR) is a rare inherited ocular disorder. Here, we describe a novel nonsense variant in the CPAMD8 gene in a patient with MCOR. We conducted a comprehensive clinical examination of a patient diagnosed with MCOR and performed whole-exome sequencing to identify potential pathogenic variants.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.

View Article and Find Full Text PDF

SUMO-modified Tripartite Motif Protein 28 (TRIM28; KAP1) plays a crucial role in repressing endogenous retroelement (ERE) transcription. We previously provided evidence that loss of SUMO-modified TRIM28 triggered by influenza A virus (IAV) infection promotes activation of host antiviral immunity via a mechanism involving derepression of EREs and production of immunostimulatory RNAs. While the IAV NS1 protein might limit consequences of such activation via its dsRNA-binding activity, we hypothesized that other human pathogenic viruses could have evolved more direct strategies to counteract this potential ERE-based defense system.

View Article and Find Full Text PDF