Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142324DOI Listing

Publication Analysis

Top Keywords

repeated exposure
16
colloidal silver
16
silver products
16
caco-2 cells
16
cell viability
12
silver
11
commercially colloidal
8
mesosilver™ agc
8
determine cell
8
silver uptake
8

Similar Publications

Atopic dermatitis (AD) is a chronic dermatological disorder characterized by intense pruritus and eczematous lesions. Repeated topical application of 2,4-dinitrofluorobenzene (DNFB) in NC/Nga mice produces AD-like clinical symptoms that closely resemble human AD. N-Acetyl-L-Alanine (L-NAA), a derivative of L-Alanine, has unknown biological and physiological effects on cutaneous tissue.

View Article and Find Full Text PDF

MHC compatibility influences the interaction between different types of equine mesenchymal stem/stromal cells and the local immune response.

Res Vet Sci

September 2025

Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS) - Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain; Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain. El

The allogeneic administration of equine mesenchymal stem/stromal cells (MSCs) has numerous advantages over autologous therapy, but their interactions with the patient's immune system need to be further elucidated. These interactions can be influenced by factors such as the compatibility between donor-receptor for the major histocompatibility complex (MHC) and by the MHC expression levels, which can change under different conditions like inflammatory exposure and chondrogeneic differentiation. In this study, we evaluated the local immune response induced by chondrogeneically differentiated (MSC-chondro), pro-inflammatory primed (MSC-primed) and basal (MSC-naïve) MSCs, and how this response changes the immunomodulatory and immunogenic profiles of MSCs in vivo.

View Article and Find Full Text PDF

Meta-analysis of the association between prenatal antibiotic exposure and risk of childhood attention-deficit/hyperactivity disorder.

J Affect Disord

September 2025

Department of emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China; Department of Emergency, Chengdu Hi-Tech Zone Ho

Background: Studies examining the association between maternal antibiotic use during pregnancy and the risk of childhood attention-deficit/hyperactivity disorder (ADHD) have yielded inconsistent results. This meta-analysis synthesizes available evidence to establish a more comprehensive understanding of this association.

Methods: Observational studies published through October 2, 2024, were systematically searched from Cochrane Library, EMBASE, Web of Science, and PubMed databases.

View Article and Find Full Text PDF

Background: Intimate partner domestic violence (IPDV) is a global health concern. We explored the association between IPDV and the subsequent onset of hazardous alcohol use among married men and women.

Methods: A total of 13,277 married adults were included in the analysis, with annual repeated measurements from 2009 to 2024, totaling 103,825 observations.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF