98%
921
2 minutes
20
The allogeneic administration of equine mesenchymal stem/stromal cells (MSCs) has numerous advantages over autologous therapy, but their interactions with the patient's immune system need to be further elucidated. These interactions can be influenced by factors such as the compatibility between donor-receptor for the major histocompatibility complex (MHC) and by the MHC expression levels, which can change under different conditions like inflammatory exposure and chondrogeneic differentiation. In this study, we evaluated the local immune response induced by chondrogeneically differentiated (MSC-chondro), pro-inflammatory primed (MSC-primed) and basal (MSC-naïve) MSCs, and how this response changes the immunomodulatory and immunogenic profiles of MSCs in vivo. Equine MSCs were embedded in alginate scaffolds and subcutaneously implanted into autologous, MHC-matched and MHC-mismatched horses. Scaffolds were recovered at different time-points for histologic and gene expression analyses, and the procedure was repeated to assess the effect of a second administration. Our results suggest that MHC-compatibility may play a key role in attenuating the local immune response induced by MSCs, which may be related to the upregulation of immunomodulatory genes in the three MSC types in vivo. In contrast, when MSCs were administered into MHC-mismatched horses, expression of immunogenic genes was higher across all MSC conditions. Therefore, the conditions in which MSCs are administered may not affect the long-term local immune response, but MHC-matched administration would favour the immune evasion of MSCs, thus being advisable especially when repeated MSC administrations are required. Comprehensively investigating the in vivo immune response against equine allogeneic MSCs is crucial for advancing veterinary cell therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rvsc.2025.105889 | DOI Listing |
Biomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFAnim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Department of Pediatric Hematology and Oncology, Batman Training and Research Hospital, Batman, Türkiye.
Background: Brucellosis is a zoonotic infection transmitted to humans by ingestion of contaminated unpasteurized dairy products or via direct or indirect contact with infected animals. It is characterized by nonspecific symptoms like fever and joint pain, and laboratory findings including anemia, leukopenia, thrombocytopenia, or rarely pancytopenia. Here we report a case of brucellosis with thrombocytopenia that did not improve despite anti-brucella treatment and required intravenous immunoglobulin treatment.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDF