Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Modelling and remodelling adapt bone morphology to accommodate strains commonly encountered during loading. If strains exceed a threshold threatening fracture, modelling-based bone formation increases bone volume reducing these strains. If unloading reduces strains below a threshold that inhibits resorption, increased remodelling-based bone resorption reduces bone volume restoring strains, but at the price of compromised bone volume and microstructure. As weight-bearing regions are adapted to greater strains, we hypothesized that microstructural deterioration will be more severe than at regions commonly adapted to low strains following spinal cord injury.

Methods: We quantified distal tibial, fibula and radius volumetric bone mineral density (vBMD) using high-resolution peripheral quantitative computed tomography in 31 men, mean age 43.5 years (range 23.5-75.0), 12 with tetraplegia and 19 with paraplegia of 0.7 to 18.6 years duration, and 102 healthy age- and sex-matched controls. Differences in morphology relative to controls were expressed as standardized deviation (SD) scores (mean ± SD). Standardized between-region differences in vBMD were expressed as SDs (95% confidence intervals, CI).

Results: Relative to controls, men with tetraplegia had deficits in total vBMD of -1.72 ± 1.38 SD at the distal tibia (p < 0.001) and - 0.68 ± 0.69 SD at distal fibula (p = 0.041), but not at the distal radius, despite paralysis. Deficits in men with paraplegia were -2.14 ± 1.50 SD (p < 0.001) at the distal tibia and -0.83 ± 0.98 SD (p = 0.005) at the distal fibula while distal radial total vBMD was 0.23 ± 1.02 (p = 0.371), not significantly increased, despite upper limb mobility. Comparing regions, in men with tetraplegia, distal tibial total vBMD was 1.04 SD (95%CI 0.07, 2.01) lower than at the distal fibula (p = 0.037) and 1.51 SD (95%CI 0.45, 2.57) lower than at the distal radius (p = 0.007); the latter two sites did not differ from each other. Results were similar in men with paraplegia, but total vBMD at the distal fibula was 1.06 SD (95%CI 0.35, 1.77) lower than at the distal radius (p = 0.004).

Conclusion: Microarchitectural deterioration following spinal cord injury is heterogeneous, perhaps partly because strain thresholds regulating the cellular activity of mechano-transduction are region specific.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115778DOI Listing

Publication Analysis

Top Keywords

bone volume
12
microstructural deterioration
8
spinal cord
8
relative controls
8
bone
7
strains
7
heterogeneity microstructural
4
deterioration spinal
4
cord injury
4
injury background
4

Similar Publications

Patients with primary plasma cell leukemia (pPCL), particularly those with extramedullary disease (EMD), face a poor prognosis even with chimeric antigen receptor (CAR)-T cell therapy. This case report describes a patient with relapsed/refractory pPCL and life-threatening malignant pleural effusion (PE) treated with intrapleural CAR-T cells targeting B-cell maturation antigens. CAR-T cell expansion within the PE was observed, along with a rapid reduction in leukemia cell count and PE volume.

View Article and Find Full Text PDF

This study aims to systematically assess the therapeutic effectiveness of TiRobot-assisted percutaneous kyphoplasty or vertebroplasty in managing osteoporotic thoracolumbar compression fractures. Previous studies have suggested that TiRobot-assisted techniques outperform conventional manual procedures in treating this condition, but relevant conclusions remain controversial. A thorough literature retrieval was carried out across 4 major databases: PubMed, Embase, the Cochrane Library, and Web of Science.

View Article and Find Full Text PDF

Background And Objective: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognised cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.

View Article and Find Full Text PDF

Fibrin Sealant-Assisted Fixation of an Autologous Iliac Bone Graft in Orbital Floor Reconstruction.

J Craniofac Surg

September 2025

Division of Ophthalmic Plastic and Reconstructive Surgery, Sadik Eratik Eye Institute, Haydarpasa Numune Education and Research Hospital, University of Health Sciences.

Orbital floor fractures can lead to enophthalmos and diplopia, often requiring surgical intervention to restore orbital volume. Autologous iliac bone grafts are commonly used due to their biocompatibility and mechanical stability, but achieving adequate fixation remains a challenge. Traditional fixation methods, such as plates and screws, may introduce risks of foreign body reactions, graft displacement, and surgical morbidity.

View Article and Find Full Text PDF

This study evaluated the influence of a customized healing abutment (CHA) placed on immediate implants. It also assessed bone ridge volume, keratinized mucosal collar, and postoperative pain. Thirty-one patients needing tooth extraction and immediate implant were selected.

View Article and Find Full Text PDF