Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Modifiable risky health behaviors, such as tobacco use, excessive alcohol use, being overweight, lack of physical activity, and unhealthy eating habits, are some of the major factors for developing chronic health conditions. Social media platforms have become indispensable means of communication in the digital era. They provide an opportunity for individuals to express themselves, as well as share their health-related concerns with peers and health care providers, with respect to risky behaviors. Such peer interactions can be utilized as valuable data sources to better understand inter-and intrapersonal psychosocial mediators and the mechanisms of social influence that drive behavior change.

Objective: The objective of this review is to summarize computational and quantitative techniques facilitating the analysis of data generated through peer interactions pertaining to risky health behaviors on social media platforms.

Methods: We performed a systematic review of the literature in September 2020 by searching three databases-PubMed, Web of Science, and Scopus-using relevant keywords, such as "social media," "online health communities," "machine learning," "data mining," etc. The reporting of the studies was directed by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Two reviewers independently assessed the eligibility of studies based on the inclusion and exclusion criteria. We extracted the required information from the selected studies.

Results: The initial search returned a total of 1554 studies, and after careful analysis of titles, abstracts, and full texts, a total of 64 studies were included in this review. We extracted the following key characteristics from all of the studies: social media platform used for conducting the study, risky health behavior studied, the number of posts analyzed, study focus, key methodological functions and tools used for data analysis, evaluation metrics used, and summary of the key findings. The most commonly used social media platform was Twitter, followed by Facebook, QuitNet, and Reddit. The most commonly studied risky health behavior was nicotine use, followed by drug or substance abuse and alcohol use. Various supervised and unsupervised machine learning approaches were used for analyzing textual data generated from online peer interactions. Few studies utilized deep learning methods for analyzing textual data as well as image or video data. Social network analysis was also performed, as reported in some studies.

Conclusions: Our review consolidates the methodological underpinnings for analyzing risky health behaviors and has enhanced our understanding of how social media can be leveraged for nuanced behavioral modeling and representation. The knowledge gained from our review can serve as a foundational component for the development of persuasive health communication and effective behavior modification technologies aimed at the individual and population levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735906PMC
http://dx.doi.org/10.2196/21660DOI Listing

Publication Analysis

Top Keywords

social media
24
risky health
20
health behaviors
12
peer interactions
12
health
9
social
8
data generated
8
media platform
8
health behavior
8
analyzing textual
8

Similar Publications

Eating disorders are primarily associated with women and an obsession with thinness. Recent research and social media content show that men are also concerned about their body image, striving for a muscular and athletic physique. To investigate eating disorder tendencies among male content creators with a mesomorphic body type (N = 26), a social media analysis was conducted on Instagram and TikTok over four weeks.

View Article and Find Full Text PDF

In recent years, social media (SoMe) has revolutionized medical education within the field of pathology; however, its performance in cytopathology has not been explored in detail. This systematic review aims to analyze SoMe trends, hashtag metrics, and online resources within cytopathology over the period of 7 years. A systematic review of 4 databases (PubMed, Medline, Embase, and Scopus) was conducted between January 1st, 2017, and December 22nd, 2022, in order to identify relevant English-language articles about SoMe and cytopathology.

View Article and Find Full Text PDF

This article offers an anocritical reading of Girls5eva, a sitcom about a 1990s one-hit girl group trying to make a comeback. Building on scholarship into the representation of aging women in popular media and the music industry, our reading first addresses fuzzy boundaries between life stages and transgressions of the normalized life course. Second, we examine the discourse of girl power and its relationship to midlife transformation.

View Article and Find Full Text PDF

Analyzing Reddit Social Media Content in the United States Related to H5N1: Sentiment and Topic Modeling Study.

J Med Internet Res

September 2025

Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF