Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maximal safe tumor resection remains the key prognostic factor for improved prognosis in brain tumor patients. Despite 5-aminolevulinic acid-based fluorescence guidance the neurosurgeon is, however, not able to visualize most low-grade gliomas (LGG) and infiltration zone of high-grade gliomas (HGG). To overcome the need for a more sensitive visualization, we investigated the potential of macroscopic, wide-field fluorescence lifetime imaging of nicotinamide adenine dinucleotide (NADH) and protoporphyrin IX (PPIX) in selected human brain tumors. For future intraoperative use, the imaging system offered a square field of view of 11 mm at 250 mm free working distance. We performed imaging of tumor tissue ex vivo, including LGG and HGG as well as brain metastases obtained from 21 patients undergoing fluorescence-guided surgery. Half of all samples showed visible fluorescence during surgery, which was associated with significant increase in PPIX fluorescence lifetime. While the PPIX lifetime was significantly different between specific tumor tissue types, the NADH lifetimes did not differ significantly among them. However, mainly necrotic areas exhibited significantly lower NADH lifetimes compared to compact tumor in HGG. Our pilot study indicates that combined fluorescence lifetime imaging of NADH/PPIX represents a sensitive tool to visualize brain tumor tissue not detectable with conventional 5-ALA fluorescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686506PMC
http://dx.doi.org/10.1038/s41598-020-77268-8DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
12
tumor tissue
12
nadh protoporphyrin
8
brain tumors
8
brain tumor
8
lifetime imaging
8
nadh lifetimes
8
tumor
6
fluorescence
6
imaging
5

Similar Publications

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Ionic Liquid Engineered Defect-Driven Green Emitting Zero-Dimensional CsPbBr Microdisks.

J Phys Chem Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.

Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.

View Article and Find Full Text PDF

Enhancing Blue Emission in Poly(‑vinylcarbazole): Synthesis, Functionalization with Anthracene, and Mitigation of Aggregation-Caused Quenching.

ACS Omega

September 2025

Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, Rio de Janeiro 21941-598, Brazil.

This study reports the synthesis and functionalization of poly-(-vinylcarbazole) (PVK) with anthracene units to enhance its blue photoluminescence properties. Structural and thermal analyses confirmed successful incorporation of anthracene moieties into the PVK backbone at an approximate 3:1 ratio of PVK repeat unit to anthracene. Photophysical characterization showed that anthracene-functionalized PVK (PVK-An) retained blue-region emission (432 nm), although with reduced emission efficiency due to π-π stacking interactions.

View Article and Find Full Text PDF

A dual-cavity lasing platform is reported in which thioflavin T (ThT), a rotor-sensitive molecular probe, is employed to map molecular-crowding effects within starch granules via coupled Fabry-Perot (FP) and whispering gallery mode (WGM) resonances. In this architecture, global standing-wave feedback is furnished by a planar FP cavity, while size-tunable WGMs are supported by ThT-coated starch granules. Granules were sorted into five diameter classes (<20, 20-30, 30-40, 40-60, and >60 μm), and lasing thresholds alongside fluorescence lifetimes were determined.

View Article and Find Full Text PDF

Halide perovskite quantum dots (QDs) have demonstrated outstanding performance in light-emitting applications. However, the performance of blue perovskite QDs lags far behind that of their red and green counterparts, especially those with color coordinates approaching (0.131, 0.

View Article and Find Full Text PDF