98%
921
2 minutes
20
A class of rotaxane is created, not by encapsulating a conventional linear thread, but rather by wrapping a large cucurbit[10]uril macrocycle about a three-dimensional, cylindrical, nanosized, self-assembled supramolecular helicate as the axle. The resulting pseudo-rotaxane is readily converted into a proper interlocked rotaxane by adding branch points to the helicate strands that form the surface of the cylinder (like branches and roots on a tree trunk). The supramolecular cylinder that forms the axle is itself a member of a unique and remarkable class of helicate metallo-drugs that bind Y-shaped DNA junction structures and induce cell death. While pseudo-rotaxanation does not modify the DNA-binding properties, proper, mechanically-interlocked rotaxanation transforms the DNA-binding and biological activity of the cylinder. The ability of the cylinder to de-thread from the rotaxane (and thus to bind DNA junction structures) is controlled by the extent of branching: fully-branched cylinders are locked inside the cucurbit[10]uril macrocycle, while cylinders with incomplete branch points can de-thread from the rotaxane in response to competitor guests. The number of branch points can thus afford kinetic control over the drug de-threading and release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c07750 | DOI Listing |
Cell Rep
September 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.
View Article and Find Full Text PDFNano Lett
September 2025
School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
Dynamic DNA nanotechnology creates programmable reaction networks and nanodevices by using DNA strands. The key reaction in dynamic DNA nanotechnology is the exchange of DNA strands between different molecular species, achieved through three- and four-way strand exchange reactions. While both reactions have been widely used, the four-way exchange reaction has traditionally been slower and less efficient than the three-way reaction.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Respiratory Medicine, Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, China.
Objective: Microplastics (MPs, 0.1-5000 μm) and nanoplastics (NPs, 0.001-0.
View Article and Find Full Text PDFGene
September 2025
Amity Institute of Health Allied Sciences, Amity University, Noida, Uttar Pradesh, India. Electronic address:
Background: Holliday Junction Recognition Protein (HJURP) is essential for centromere integrity and chromosomal stability through its role in CENP-A deposition. Emerging studies suggest that HJURP also contributes to various aspects of cancer biology, including tumor initiation, progression, and metastasis.
Objective: To comprehensively review the molecular and clinical relevance of HJURP in cancer, with a focus on its role in genomic maintenance, cancer hallmarks, and its potential as a prognostic biomarker and therapeutic target.
Adv Drug Deliv Rev
September 2025
Department of Chemistry, Purdue University, West Lafayette 47907, IN 47907, USA. Electronic address:
DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g.
View Article and Find Full Text PDF