Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Palladium (Pd) and platinum (Pt) are extensively used as catalysts in the petrochemical and automotive industries, and due to high demand for them on the market, their recycling from spent supported catalysts is clearly needed. To assess the content of Pd and Pt in catalysts in order to establish their commercial value or to evaluate the recovery efficiency of technologies used for recycling, reliable analytical methods for determination of these elements are required. Spectrometric methods, such as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GFAAS) are powerful tools that can be employed for the determination of Pd and Pt in various sample matrices. However, these methods allow only the injection of liquid samples. In this regard, the digestion of solid sample by microwave-assisted acid extraction procedures at high pressures and temperatures is often used. In this study, a microwave acid digestion method was optimized for the extraction of Pd and Pt from spent catalysts, using a four-step program, at a maximum 200 °C. The resulting solutions were analyzed using ICP-OES, at two different wavelengths for each metal (Pd at 340.458 and 363.470 nm, and Pt at 265.945 and 214.423 nm, respectively) and using GFAAS (Pd at 247.64 nm, Pt at 265.94 nm). Five types of spent catalyst were analyzed and the standard deviations of repeatability for five parallel samples were less than predicted relative standard deviations (PRSD%) calculated using Horvitz's equation for all the analyzed samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697727PMC
http://dx.doi.org/10.3390/ma13225136DOI Listing

Publication Analysis

Top Keywords

inductively coupled
8
coupled plasma
8
plasma optical
8
optical emission
8
emission spectrometry
8
graphite furnace
8
furnace atomic
8
atomic absorption
8
absorption spectrometry
8
standard deviations
8

Similar Publications

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Transient electronics that can degrade after fulfilling their designed functionalities offer transformative potentials in biomedical implants (eliminating secondary surgeries), ecofriendly consumer electronics (reducing e-waste), and secure systems. However, the development of reliable transient energy supplies remains a critical challenge, thus limiting their widespread implementation. Among various solutions, wireless power supplies via near-field inductive coupling stand out as particularly promising candidates.

View Article and Find Full Text PDF

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.

View Article and Find Full Text PDF

Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.

View Article and Find Full Text PDF