Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the advent of wearable microelectronic devices in the interdisciplinary bio-electronics research field, synaptic devices with capability of neuromorphic computing are attracting more and more attention as the building blocks for the next generation computing structure. Conventional flash-like synaptic transistors are built on rigid solid-state substrates, and the inorganic materials and the high-temperature processing steps have severely limited their applications in various flexible electronic devices and systems. Here, flexible organic flash-like synaptic devices have been fabricated on a flexible substrate with the organic C8-BTBT as the conducting channel. The device exhibits a memory window greater than 20 V and excellent synaptic functions including short/long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, even under the bending condition (7 mm bending radius), the transistor can still stably achieve a variety of synaptic functions. This work shows that low-temperature processing technology with the integration of organic materials can pave a promising pathway for the realization of flexible synaptic systems and the future development of wearable electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr06478eDOI Listing

Publication Analysis

Top Keywords

flexible organic
8
synaptic devices
8
flash-like synaptic
8
electronic devices
8
synaptic functions
8
synaptic
7
flexible
5
devices
5
organic field-effect
4
field-effect transistor
4

Similar Publications

Picric Acid Removal from Water Using an Anion-Coordination-Based Supramolecular Organic Framework.

J Am Chem Soc

September 2025

Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.

In contrast to metal ions that have been routinely used to construct metal-organic frameworks (MOFs), anions have rarely been used as essential coordination centers in supramolecular organic frameworks (SOFs). In this work, we present a SOF, , based on the coordination of chloride anions and a flexible oligopyrrole. Owing to the multiple interactions between individual oligopyrrole molecules and an A-B-C-style stacking of the 2D honeycomb layers, crystalline exhibits reasonable thermal stability and retains its structure upon desolvation.

View Article and Find Full Text PDF

Commercial lithium-ion batteries using organic solvent-based liquid electrolytes (LEs) face safety issues, including risks of fire and explosion. As a safer alternative, solid-state electrolytes are being extensively explored to replace these organic solvent-based LEs. Among various solid electrolyte options, polymer electrolytes offer advantages such as flexibility and ease of processing.

View Article and Find Full Text PDF

Gbits/s-Level Encrypted Spectral Wireless Communication Enabled by High-Performance Flexible Organic Hyperspectrometer.

Adv Mater

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.

The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.

View Article and Find Full Text PDF

Small organic ligands for the ecdysone receptor - agrochemicals, gene switches, and beyond.

Pestic Biochem Physiol

November 2025

School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2050, Australia.

While pesticides are essential for the world to meet its increasing demand for food, off-target toxicity in humans and other species is an ongoing environmental issue. There is a strong motivation for developing more selective pesticides that can target pest insects, for example, while being benign for beneficial insects such as bees, and other nontarget species more generally. The ecdysone receptor is absent in vertebrates so constitutes a very useful target for green insecticides.

View Article and Find Full Text PDF

Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.

View Article and Find Full Text PDF