Hypoglycemic Effect of Prolamin from Cooked Foxtail Millet () on Streptozotocin-Induced Diabetic Mice.

Nutrients

Key Laboratory of Plant Protein and Grain Processing, National Engineering Research Center for Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Millet proteins have been demonstrated to possess glucose-lowering and lipid metabolic disorder modulation functions against diabetes; however, the molecular mechanisms underlying their anti-diabetic effects remain unclear. The present study aimed to investigate the hypoglycemic effect of prolamin from cooked foxtail millet (PCFM) on type 2 diabetic mice, and explore the gut microbiota and serum metabolic profile changes that are associated with diabetes attenuation by PCFM. Our diabetes model was established using a high-fat diet combined with streptozotocin before PCFM or saline was daily administrated by gavage for 5 weeks. The results showed that PCFM ameliorated glucose metabolism disorders associated with type 2 diabetes. Furthermore, the effects of PCFM administration on gut microbiota and serum metabolome were investigated. 16S rRNA gene sequencing analysis indicated that PCFM alleviated diabetes-related gut microbiota dysbiosis in mice. Additionally, the serum metabolomics analysis revealed that the metabolite levels disturbed by diabetes were partly altered by PCFM. Notably, the decreased D-Glucose level caused by PCFM suggested that its anti-diabetic potential can be associated with the activation of glycolysis and the inhibition of gluconeogenesis, starch and sucrose metabolism and galactose metabolism. In addition, the increased serotonin level caused by PCFM may stimulate insulin secretion by pancreatic β-cells, which contributed to its hypoglycemic effect. Taken together, our research demonstrated that the modulation of gut microbiota composition and the serum metabolomics profile was associated with the anti-diabetic effect of PCFM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696583PMC
http://dx.doi.org/10.3390/nu12113452DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
pcfm
10
hypoglycemic prolamin
8
prolamin cooked
8
cooked foxtail
8
foxtail millet
8
diabetic mice
8
microbiota serum
8
serum metabolomics
8
level caused
8

Similar Publications

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF