TNFAIP1 Is Upregulated in APP/PS1 Mice and Promotes Apoptosis in SH-SY5Y Cells by Binding to RhoB.

J Mol Neurosci

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) poses a significant threat to human life and health. The intraneuronal accumulation of β-amyloid (Aβ) plaques in the brains of AD patients results in neuronal cell death, which is a key factor that triggers multiple changes in the pathogenesis of AD. The inhibition of Aβ-induced neuronal cell death may potentially help in the intervention and treatment of AD. Our previous study reported that tumor necrosis factor α-induced protein 1 (TNFAIP1) is induced by and promotes Aβ-induced neurotoxicity in mouse neuronal cells, but the roles and regulatory mechanisms of TNFAIP1 are still largely unknown. In this study, our experimental results show that TNFAIP1 and p-TNFAIP1 (phosphorylation of TNFAIP1 at Ser280) are overexpressed in the neurons of the cortex and hippocampus in the brains of APP/PS1 mice, and the transcription factor NF-κB is involved in the Aβ-induced upregulation of TNFAIP1. Moreover, our results suggest that TNFAIP1 contributes to the Aβ-induced reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (∆Ψm), and neuronal cell death in human SH-SY5Y cells. We further revealed that Aβ increases the binding of TNFAIP1 to RhoB, and knockdown of RhoB attenuates the TNFAIP1-induced apoptosis of human SH-SY5Y cells. These data suggest that TNFAIP1 is closely associated with AD pathogenesis, and overexpression of TNFAIP1 in the neurons of the brains of AD patients plays a role in apoptosis, at least in part, via RhoB signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-020-01748-9DOI Listing

Publication Analysis

Top Keywords

sh-sy5y cells
12
neuronal cell
12
cell death
12
tnfaip1
10
app/ps1 mice
8
brains patients
8
human sh-sy5y
8
tnfaip1 upregulated
4
upregulated app/ps1
4
mice promotes
4

Similar Publications

Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.

View Article and Find Full Text PDF

Cytoprotective Effects of Gymnemic Acid 1 in Cellular Models of Neurodegeneration.

Neuropharmacology

September 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, USA. Electronic address:

Gymnema sylvestre (G. sylvestre) is a traditional medicinal herb known for its anti-diabetic properties, yet its molecular mechanisms remain unknown. Growing evidence suggests a strong link between insulin resistance and neurodegeneration, mediated by impaired pro-survival signaling (e.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Microglial cells are key mediators of ethanol-induced neuroinflammation through the release of proinflammatory cytokines and activation of Toll-like receptors. Recently, the signaling pathway initiated by the interaction of the neurotrophic factors pleiotrophin (PTN) and midkine (MK) with receptor-type protein tyrosine phosphatase β/ζ (RPTPβ/ζ) has emerged as a pharmacological target in ethanol-induced neuroinflammatory and neurodegenerative processes. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Objective: Enterovirus 71 (EV-A71) is a major pathogen of severe hand, foot and mouth disease (HFMD) in children, but the mechanism by which it develops into severe HFMD remains unclear, especially the role of macrophage-mediated immune dysregulation.

Methods: Bioinformatics tools were utilized to analyze the transcriptome sequencing results of peripheral blood monocytes (PBMCs) infected with different titers of EV-A71 at various time points. Single-cell sequencing technology was used to sequence obtained PBMCs from a severe HFMD patient due to EV-A71 and a healthy control.

View Article and Find Full Text PDF