98%
921
2 minutes
20
The past decade has been a golden age for microbiology, marked by the discovery of an unprecedented increase in the number of novel bacterial species. Yet gaining biological knowledge of those organisms has not kept pace with sequencing efforts. To unlock this genetic potential there is an urgent need for generic (i.e. non-species specific) genetic toolboxes. Recently, we developed a method, termed chassis-independent recombinase-assisted genome engineering (CRAGE), enabling the integration and expression of large complex gene clusters directly into the chromosomes of diverse bacteria. Here we expand upon this technology by incorporating CRISPR-Cas9 allowing precise genome editing across multiple bacterial species. To do that we have developed a landing pad that carries one wild-type and two mutant lox sites to allow integration of foreign DNA at two locations through Cre-lox recombinase-mediated cassette exchange (RMCE). The first RMCE event is to integrate the Cas9 and the DNA repair protein genes RecET, and the second RMCE event enables the integration of customized sgRNA and a repair template. Following this workflow, we achieved precise genome editing in four different gammaproteobacterial species. We also show that the inserted landing pad and the entire editing machinery can be removed scarlessly after editing. We report here the construction of a single landing pad transposon and demonstrate its functionality across multiple species. The modular design of the landing pad and accessory vectors allows design and assembly of genome editing platforms for other organisms in a similar way. We believe this approach will greatly expand the list of bacteria amenable to genetic manipulation and provides the means to advance our understanding of the microbial world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641437 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241867 | PLOS |
Mol Ther
September 2025
Be Biopharma, Cambridge, MA, 02139, USA. Electronic address:
Hemophilia B gene therapy treatments currently have not addressed the need for predictable, durable, active, and redosable factor IX (FIX). Unlike conventional gene therapy, engineered B Cell Medicines (BCMs) are durable, redosable, and titratable, and thus have the potential to address significant unmet needs in the Hemophilia B treatment paradigm. BE-101 is an autologous BCM comprised of expanded and differentiated B lymphocyte lineage cells genetically engineered ex vivo to secrete FIX-Padua.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia.
Esophageal cancer (EC) is one of the most serious health issues around the world, ranking seventh among the most lethal types of cancer and eleventh among the most common types of cancer worldwide. Traditional therapies-such as surgery, chemotherapy, and radiation therapy-often yield limited success, especially in the advanced stages of EC, prompting the pursuit of novel and more effective treatment strategies. Immunotherapy has emerged as a promising option; nonetheless, its clinical success is hindered by variable patient responses.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:
Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.
View Article and Find Full Text PDFNeurogenetics
September 2025
Nur International University, 54600, Lahore, Punjab, Pakistan.
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.
View Article and Find Full Text PDFNat Genet
September 2025
Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
Gene expression is modulated jointly by transcriptional regulation and messenger RNA stability, yet the latter is often overlooked in studies on genetic variants. Here, leveraging metabolic labeling data (Bru/BruChase-seq) and a new computational pipeline, RNAtracker, we categorize genes as allele-specific RNA stability (asRS) or allele-specific RNA transcription events. We identify more than 5,000 asRS variants among 665 genes across a panel of 11 human cell lines.
View Article and Find Full Text PDF