Publications by authors named "Jan-Fang Cheng"

Fervidibacter sacchari is an aerobic hyperthermophile belonging to the phylum Armatimonadota that degrades a variety of polysaccharides. Its genome encodes 117 enzymes with one or more annotated glycoside hydrolase (GH) domain, but the roles of these putative GHs in polysaccharide catabolism are poorly defined. Here, we describe one F.

View Article and Find Full Text PDF

The profound stability of bacterial spores makes them a promising platform for biotechnological applications like biocatalysis, bioremediation, drug delivery, etc. However, though the spore is composed of >40 proteins, only ∼12 have been explored as fusion carriers for protein display. Here, we assessed the suitability of 33 spore proteins (SPs) as enzyme display carriers by direct allele tagging at native genomic loci.

View Article and Find Full Text PDF
Article Synopsis
  • * Advanced techniques like genome analysis and optical tweezers were used to isolate and study these microorganisms, revealing their rapid assimilation of C-starch in sediments.
  • * The study proposes a taxonomic reclassification of the Fervidibacteria, highlighting their important role in polysaccharide degradation within a newly defined class of the Armatimonadota phylum.
View Article and Find Full Text PDF

The aerobic hyperthermophile catabolizes diverse polysaccharides and is the only cultivated member of the class within the phylum . It encodes 117 putative glycoside hydrolases (GHs), including two from GH family 50 (GH50). In this study, we expressed, purified, and functionally characterized one of these GH50 enzymes, Fsa16295Glu.

View Article and Find Full Text PDF

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site.

View Article and Find Full Text PDF

High-throughput genetic screening is frequently employed to rapidly associate gene with phenotype and establish sequence-function relationships. With the advent of CRISPR technology, and the ability to functionally interrogate previously genetically recalcitrant organisms, non-model organisms can be investigated using pooled guide RNA (gRNA) libraries and sequencing-based assays to quantitatively assess fitness of every targeted locus in parallel. To aid the construction of pooled gRNA assemblies, we have developed an design workflow for gRNA selection using the gRNA Sequence Region Extraction Tool (gRNA-SeqRET).

View Article and Find Full Text PDF

CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca.

View Article and Find Full Text PDF

Anaerobic fungi (Neocallimastigomycetes) found in the guts of herbivores are biomass deconstruction specialists with a remarkable ability to extract sugars from recalcitrant plant material. Anaerobic fungi, as well as many species of anaerobic bacteria, deploy multi-enzyme complexes called cellulosomes, which modularly tether together hydrolytic enzymes, to accelerate biomass hydrolysis. While the majority of genomically encoded cellulosomal genes in Neocallimastigomycetes are biomass degrading enzymes, the second largest family of cellulosomal genes encode spore coat CotH domains, whose contribution to fungal cellulosome and/or cellular function is unknown.

View Article and Find Full Text PDF

Background: Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential.

View Article and Find Full Text PDF

Our recent development of the CRAGE (chassis-independent recombinase-assisted genome engineering) system enables single-step integration of large, complex DNA constructs directly into bacteria genomes across multiple phyla. This protocol describes the details of the experimental design and procedures of CRAGE and extended CRAGE-Duet systems. It also describes a strategy that combines CRISPR with CRAGE, which allows implementation of CRISPR-Cas9, CRISPRa, and CRISPRi in diverse bacteria, overcoming major limitations to broaden the application of CRISPR in non-model bacterial genome engineering.

View Article and Find Full Text PDF

We describe environmental microbial eukaryotes (EMEs) sample collection, single-cell isolation, lysis, and genome amplification, followed by the rDNA amplification and OTU screening for recovery of high-quality species-specific genomes for assembly. These protocols are part of our pipeline that also includes bioinformatic methods. The pipeline and its application on a wide range of phyla of different sample complexity are described in our complementary paper.

View Article and Find Full Text PDF

The rapid design and assembly of synthetic DNA constructs have become a crucial component of biological engineering projects via iterative design-build-test-learn cycles. In this perspective, we provide an overview of the workflows used to generate the thousands of constructs and libraries produced each year at the U.S.

View Article and Find Full Text PDF

Objective: Shewanella algae is a zoonotic marine bacterium that causes a variety of infections in immunocompromised patients or those who have been exposed to seawater. The development of trimethoprim/sulfamethoxazole (TMP/SMX) resistance in S. algae are found in human and environment isolates during the past ten years, and thus the treatment options are decreasing.

View Article and Find Full Text PDF

With the advent of genome sequencing and mining technologies, secondary metabolite biosynthetic gene clusters (BGCs) within bacterial genomes are becoming easier to predict. For subsequent BGC characterization, clustered regularly interspaced short palindromic repeats (CRISPR) has contributed to knocking out target genes and/or modulating their expression; however, CRISPR is limited to strains for which robust genetic tools are available. Here we present a strategy that combines CRISPR with chassis-independent recombinase-assisted genome engineering (CRAGE), which enables CRISPR systems in diverse bacteria.

View Article and Find Full Text PDF

Single-cell sequencing of environmental microorganisms is an essential component of the microbial ecology toolkit. However, large-scale targeted single-cell sequencing for the whole-genome recovery of uncultivated eukaryotes is lagging. The key challenges are low abundance in environmental communities, large complex genomes, and cell walls that are difficult to break.

View Article and Find Full Text PDF

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy.

View Article and Find Full Text PDF

The past decade has been a golden age for microbiology, marked by the discovery of an unprecedented increase in the number of novel bacterial species. Yet gaining biological knowledge of those organisms has not kept pace with sequencing efforts. To unlock this genetic potential there is an urgent need for generic (i.

View Article and Find Full Text PDF

Shewanella algae is not only the most commonly reported species in Shewanella human infections but also capable to inhabit a wide variety of habitats. Although there is evidence that quorum sensing is associated with bacterial adaptation to changing environmental conditions, little is known of the quorum sensing system in S. algae.

View Article and Find Full Text PDF

Biological computer-aided design and manufacturing (bioCAD/CAM) tools facilitate the design and build processes of engineering biological systems using iterative design-build-test-learn (DBTL) cycles. In this book chapter, we highlight some of the bioCAD/CAM tools developed and used at the US Department of Energy (DOE) Joint Genome Institute (JGI), Joint BioEnergy Institute (JBEI), and Agile BioFoundry (ABF). We demonstrate the use of these bioCAD/CAM tools on a common workflow for designing and building a multigene pathway in a hierarchical fashion.

View Article and Find Full Text PDF

Developing sustainable agricultural practices will require increasing our understanding of plant-microbe interactions. To study these interactions, new genetic tools for manipulating nonmodel microbes will be needed. To help meet this need, we recently reported development of chassis-independent recombinase-assisted genome engineering (CRAGE).

View Article and Find Full Text PDF

Most classic genetic approaches utilize binary modifications that preclude the identification of key knockdowns for essential genes or other targets that only require moderate modulation. As a complementary approach to these classic genetic methods, we describe a plasmid-based library methodology that affords bidirectional, graded modulation of gene expression enabled by tiling the promoter regions of all 969 genes that comprise the ito977 model of s metabolic network. When coupled with a CRISPR-dCas9-based modulation and next-generation sequencing, this method affords a library-based, bidirection titration of gene expression across all major metabolic genes.

View Article and Find Full Text PDF

Background: Shewanella algae is a zoonotic pathogen that poses a serious health threat to immunocompromised hosts. Treatment of S. algae infections is challenging due to the pathogen's intrinsic resistance to a variety of β-lactam antibiotics.

View Article and Find Full Text PDF

The oxygen transport function of hemoglobin (HB) is thought to have arisen ∼500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question of whether erythroid-specific expression of HB also evolved twice independently.

View Article and Find Full Text PDF