[Met]-enkephalin preserves diffusion metrics in EAE mice.

Brain Res Bull

Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine Hershey, PA, 17033, USA. Electronic address:

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple sclerosis is a chronic progressive neurological disorder that has few distinctive biomarkers associated with disease progression or response to therapy. This research investigated whether non-invasive imaging correlated with animal behavior and morphological indicators of disease in response to serum levels of [Met]-enkephalin. Using the experimental autoimmune encephalomyelitis (EAE) model, adult female C57BL/6 J mice were randomized to receive daily injections of 0.1 mg/kg naltrexone (NTX) (= low dose naltrexone, LDN), 10 mg/kg Opioid Growth Factor (OGF) (chemically termed [Met]-enkephalin) or saline beginning at the time of disease induction. Daily composite behavior scores were recorded over a 30-day period based on tail tone, gait, righting reflex, and limb strength. Prior to disease onset (day 7), and at peak disease (day 18), mice were imaged and tissues (blood and spinal cord) collected at day 30 for serum analyses of OGF and morphology. Serum OGF levels of EAE mice treated with saline were significantly reduced from baseline and from normal mice. Longitudinal cohort data demonstrated an increase in fractional anisotropy in all cohorts by day 18. There was a significant decrease in radial diffusivity in the saline group seen at day 18 whereas the axial diffusivity was not altered amongst treatment groups. Treatment with OGF or LDN resulted in mean diffusivity rates that were comparable to baseline (normal) levels at days 7 and 18. Luxol fast blue staining of the lumbar spinal cords demonstrated a 16 % reduction in myelin staining in saline treated EAE animals when compared to OGF and LDN treated EAE mice. Immunohistochemistry with Olig2 (pan-oligodendrocyte marker) and myelin basic protein (MBP) revealed that OGF and LDN treatment restored the area (%) of MBP and number of oligodendrocytes to that of normal spinal cord (∼75 %). Saline treated EAE mice had more demyelination and fewer oligodendrocytes than normal mice. Collectively, these data suggest that a panel of biomarkers including imaging, serum biomarker levels, and behavior correlate with progression of disease, and may begin to validate use of specific non-invasive markers for MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2020.10.015DOI Listing

Publication Analysis

Top Keywords

eae mice
16
ogf ldn
12
treated eae
12
mice
8
spinal cord
8
baseline normal
8
normal mice
8
saline treated
8
oligodendrocytes normal
8
eae
6

Similar Publications

Exosome-mediated co-delivery of superoxide dismutase and chondroitinase ABC for multiple sclerosis therapy.

Int J Biol Macromol

September 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun, 130012, China. Electronic address:

Multiple sclerosis is an autoimmune demyelinating disease, and its effective treatment is a great challenge. As a typical animal model for studying multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) is characterized by inflammation, demyelination, gliosis and axonal loss. Thus, simultaneous regulation of neuroinflammation and remyelination may be a useful strategy against EAE.

View Article and Find Full Text PDF

Environmental stimuli, including the exposure to ultraviolet (UV)-B light, are known to play a role in the modulation of immune-mediated mechanisms in multiple sclerosis (MS). In experimental autoimmune encephalomyelitis (EAE), we have shown that UV-B irradiation ameliorates disease outcome by regulatory T cells (Treg) expansion. Moreover, the UV-B-mediated induction of Treg numbers was also observed in MS.

View Article and Find Full Text PDF

Background: Bispecific killer engagers (BiKEs), which harness natural killer cells to deplete target cells, have garnered success in ablating tumor cells but have not been well explored in eliminating primary cells, such as effector cells in autoimmune diseases. Previously, we reported a BiKE that targeted human lymphocytes expressing programmed death-1 (PD-1). The BiKE was shown to promote NK cell-mediated depletion of PD-1+ cells in vitro.

View Article and Find Full Text PDF

Follicular regulatory T cells (T cells) constitute a subset of regulatory T cells pivotal to the immune response in germinal centers (GCs) that inhibit autoantibody production. Their role, however, remains ill-defined in autoimmune diseases like multiple sclerosis (MS) and its murine model, experimental autoimmune encephalomyelitis (EAE), which are neuroinflammatory diseases driven by T and B cells. Here, we quantified peripheral blood immune subpopulations in two cohorts of patients with MS and found higher circulating T cell frequencies in patients in relapse compared with patients in remission.

View Article and Find Full Text PDF

We examined the expression and localization of osteopontin (OPN) in various organs in mice with experimental autoimmune encephalomyelitis (EAE). To evaluate the level of OPN in blood and various tissues, enzyme-linked immunosorbent assay and western blot analysis of OPN were performed. The serum level of OPN was significantly increased in mice with EAE, and OPN was upregulated in all tissues examined, including the liver, kidneys, intestines, and spinal cord.

View Article and Find Full Text PDF