Publications by authors named "Mark D Meadowcroft"

Article Synopsis
  • This study examines the effects of low dose naltrexone (LDN) and Opioid Growth Factor (OGF) on multiple sclerosis using an EAE mouse model, focusing on behavioral changes and tissue analysis as indicators of disease progression.
  • Results indicated that saline-treated EAE mice showed significant reductions in serum OGF levels and demyelination, while OGF and LDN treatments helped restore myelin and oligodendrocyte levels to that of healthy mice.
  • Imaging results demonstrated that both treatments normalized certain brain imaging metrics, suggesting potential therapeutic benefits in managing multiple sclerosis symptoms and progression.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized pathologically by amyloid beta (Aβ) deposition, microgliosis, and iron dyshomeostasis. Increased labile iron due to homeostatic dysregulation is believed to facilitate amyloidogenesis. Free iron is incorporated into aggregating amyloid peptides during Aβ plaque formation and increases potential for oxidative stress surrounding plaques.

View Article and Find Full Text PDF

OBJECTIVEIntracranial aneurysms are vascular abnormalities associated with neurological morbidity and mortality due to risk of rupture. In addition, many aneurysm treatments have associated risk profiles that can preclude the prophylactic treatment of asymptomatic lesions. Gamma Knife radiosurgery (GKRS) is a standard treatment for trigeminal neuralgia, tumors, and arteriovenous malformations.

View Article and Find Full Text PDF

Parkinson's disease is marked clinically by motor dysfunction and pathologically by dopaminergic cell loss in the substantia nigra and iron accumulation in the substantia nigra. The driver underlying iron accumulation remains unknown and could be genetic or environmental. The HFE protein is critical for the regulation of cellular iron uptake.

View Article and Find Full Text PDF

Impaired brain iron homeostatic mechanisms, independent of pathological hallmarks, are harmful to the brain because excess free iron can cause DNA, protein, and lipid damage via oxidative stress. The goal of this study was to evaluate the longitudinal effect of chronic iron overload and deficiency in the vertebrate brain. Ten-week-old C57BL6 male mice were randomly assigned to one of four unique dietary regiments for 1 year: iron-deficient, normal iron, and two different concentrations of lipophilic iron diet containing 3,5,5-trimethylhexanoyl ferrocene (TMHF).

View Article and Find Full Text PDF

Background And Purpose: The H63D-HFE single nucleotide polymorphism (SNP) has been associated with brain iron dysregulation; however, the emergent role of this missense variant in brain structure and function has yet to be determined. Previous work has demonstrated that HFE SNP carriers have reduced white matter magnetic resonance imaging (MRI) proton relaxation rates. The mechanism by which white matter alterations perturb MRI relaxation is unknown as is how these metrics are related to myelin integrity.

View Article and Find Full Text PDF

Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, the DMN's role during olfactory processing was investigated using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation, and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26 ± 4 years, 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor + visual and visual-only trial conditions.

View Article and Find Full Text PDF

Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation.

View Article and Find Full Text PDF

The dysregulation of iron metabolism in Alzheimer's disease is not accounted for in the current framework of the amyloid cascade hypothesis. Accumulating evidence suggests that impaired iron homeostasis is an early event in Alzheimer's disease progression. Iron dyshomeostasis leads to a loss of function in several enzymes requiring iron as a cofactor, the formation of toxic oxidative species, and the elevated production of beta-amyloid proteins.

View Article and Find Full Text PDF

Disruption of iron homeostasis and increased glial response are known to occur in brains afflicted by Alzheimer's disease (AD). While the APP/PS1 transgenic mouse model recapitulates the hallmark amyloid-beta plaque pathology of AD, it does so in a different neuronal mileu than humans. Understanding the iron characteristics and glial response of the APP/PS1 model is important when testing new treatment procedures and translating these results.

View Article and Find Full Text PDF

Dysregulation of neural iron is known to occur during the progression of Alzheimer's disease. The visualization of amyloid-beta (Aβ) plaques with MRI has largely been credited to rapid proton relaxation in the vicinity of plaques as a result of focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques.

View Article and Find Full Text PDF

Purpose: To establish the relationship between ALS histopathology and quantitative MRI metrics.

Materials And Methods: ALS patients (N = 8) in advanced stages of the disease were enrolled and, immediately after death, the brain of each patient was removed. Freshly excised ALS tissue was imaged at 3.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is accompanied by smell dysfunction, as measured by psychophysical tests. Currently, it is unknown whether AD-related alterations in central olfactory system neural activity, as measured by functional magnetic resonance imaging (fMRI), are detectable beyond those observed in healthy elderly. Moreover, it is not known whether such changes are correlated with indices of odor perception and dementia.

View Article and Find Full Text PDF

Purpose: To investigate the relationship between MR image contrast associated with beta-amyloid (Abeta) plaques and their histology and compare the histopathological basis of image contrast and the relaxation mechanism associated with Abeta plaques in human Alzheimer's disease (AD) and transgenic APP/PS1 mouse tissues.

Materials And Methods: With the aid of the previously developed histological coil, T(2) (*)-weighted images and R(2) (*) parametric maps were directly compared with histology stains acquired from the same set of Alzheimer's and APP/PS1 tissue slices.

Results: The electron microscopy and histology images revealed significant differences in plaque morphology and associated iron concentration between AD and transgenic APP/PS1 mice tissue samples.

View Article and Find Full Text PDF

Direct imaging of a histological slice is challenging. The vast difference in dimension between planar size and the thickness of histology slices would require an RF coil to produce a uniform RF magnetic (B1) field in a 2D plane with minimal thickness. In this work a novel RF coil designed specifically for imaging a histology slice was developed and tested.

View Article and Find Full Text PDF