98%
921
2 minutes
20
Reducing the potential leaching of Mo and Ni from the fly ash (FA) of petroleum coke is an increasingly important issue as Asia and Europe's demand is expected to drastically intensify as continuing urbanisation and technological innovation demands ever more electricity. In the present study, we investigated coal combustion products (CCP) from a large coal-fired power station fed with a 56:44 coal/petroleum coke blend. Results revealed that leachable concentrations of Mo and Ni from FA were in the upper non-hazardous limit and in the inert limit, respectively (2003/33/EC). Whilst common prevention measures for Mo and Ni based on the adsorption capacity of boiler slag (BS), a mixture of BS: goethite, and jarosite, were considered insufficient to reduce the potential leaching of Mo into FA leachates, a novel chemical stabilisation method based on an aggregate product of portlandite and FA immobilised both Mo and Ni such that the resulting concentrations were below the limits established in the abovementioned 2003 EC Decision. Precipitation may be responsible for the fixation of Mo and Ni in the FA: portlandite aggregates as Ca(MoO) and NiMoO, respectively. The findings of this novel study support the use of this aggregate to reduce FA pollutants, which will be of particular interest to nations that remain largely coal/petroleum coke-dependant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.111488 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
The aluminum electrolysis industry generates massive greenhouse gas emissions dominated by CO and perfluorocarbons (PFCs, CF/CF), presenting dual challenges of climate impact and resource waste. Here, we report a robust nickel-based metal-organic framework (SIFSIX-3-Ni) featuring confined square channels (3.55 Å) that achieves the molecular-sieving separation of CO from CF/CF mixtures.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Individualized Drug Therapy Research Program, University of Helsinki, Finland; Wihuri Research Institute, Helsinki, Finland; Helsinki One Health, Helsinki, Finland. Electronic address:
Vascular Endothelial Growth Factor C (VEGFC) is a promising biological drug, with preclinical studies indicating its potential for treating myocardial infarction, neurodegenerative diseases, and lymphedema, a condition that currently lacks curative treatment. While adenoviral VEGFC gene therapy has progressed to phase II studies, its clinical efficacy is limited by rapid immune inactivation. This study explores lignin nanoparticles (LNPs) as an alternative VEGFC delivery system.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India. Electronic address:
Integrating multi-enzyme systems within metal-organic frameworks (MOFs) has garnered significant attention in biocatalysis due to their tunable structural properties and ability to enhance enzyme performance in cascade reactions. The unique features of MOFs, such as well-defined pore apertures, tailorable compositions, and high loading capacity, facilitate the design of robust multi-enzyme bio-composites with enhanced recyclability and specificity. This review explores systematic approaches for the compartmentalization and positional co-immobilization of multiple enzymes within MOFs, focusing on two key strategies: (i) layer-by-layer assembly and (ii) pore-engineered compartmentalization.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:
With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).
View Article and Find Full Text PDF