Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To develop an automated retina layer thickness measurement tool for the ImageJ platform, to quantitate nuclear layers following the retina contour. We developed the ThicknessTool (TT), an automated thickness measurement plugin for the ImageJ platform. To calibrate TT, we created a calibration dataset of mock binary skeletonized mask images with increasing thickness masks and different rotations. Following, we created a training dataset and performed an agreement analysis of thickness measurements between TT and two masked manual observers. Finally, we tested the performance of TT measurements in a validation dataset of retinal detachment images. In the calibration dataset, there were no differences in layer thickness between measured and known thickness masks, with an overall coefficient of variation of 0.00%. Training dataset measurements of immunofluorescence retina nuclear layers disclosed no significant differences between TT and any observer's average outer nuclear layer (ONL) (p = 0.998), inner nuclear layer (INL) (p = 0.807), and ONL/INL ratio (p = 0.944) measurements. Agreement analysis showed that bias between TT vs. observers' mean was lower than between any observers' mean against each other in the ONL (0.77 ± 0.34 µm vs 3.25 ± 0.33 µm) and INL (1.59 ± 0.28 µm vs 2.82 ± 0.36 µm). Validation dataset showed that TT can detect significant and true ONL thinning (p = 0.006), more sensitive than manual measurement capabilities (p = 0.069). ThicknessTool can measure retina nuclear layers thickness in a fast, accurate, and precise manner with multi-platform capabilities. In addition, the TT can be customized to user preferences and is freely available to download.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595229PMC
http://dx.doi.org/10.1038/s41598-020-75501-yDOI Listing

Publication Analysis

Top Keywords

layer thickness
12
nuclear layers
12
thicknesstool automated
8
thickness
8
thickness measurement
8
imagej platform
8
calibration dataset
8
thickness masks
8
training dataset
8
agreement analysis
8

Similar Publications

Novel Precursor for h‑BN Synthesis on Ni(111) Substrates.

J Phys Chem C Nanomater Interfaces

September 2025

Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.

In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.

View Article and Find Full Text PDF

Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.

View Article and Find Full Text PDF

Thickness-Dependent Low Lattice Thermal Conductivity of Chemical Vapor-Deposited SnSe Nanosheets.

ACS Nano

September 2025

State Key Lab of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

SnSe is a layered semiconductor with intrinsically low thermal conductivity, making it a promising candidate for thermoelectric and thermal management applications. However, detailed measurements of the intrinsic thermal conductivity of SnSe nanosheets grown by chemical vapor deposition (CVD) remain scarce. Here, monocrystalline SnSe nanosheets were synthesized by CVD, with systematic investigation of thickness-dependent in-plane thermal conductivity.

View Article and Find Full Text PDF

The rapid advancement of three-dimensional (3D) printing technologies has significantly expanded their potential applications such as sensors and detector technology. In this study, the gamma-ray shielding performance of ulexite-doped composite resins fabricated via Digital Light Processing (DLP) 3D printing was experimentally investigated to evaluate radiation attenuation capacity. Composite resins containing different ulexite loadings (0, 1, 3, and 5 wt%) were exposed to gamma rays at energies of 356, 662, 1173, and 1333 keV to evaluate their attenuation characteristics.

View Article and Find Full Text PDF

Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.

Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.

View Article and Find Full Text PDF