98%
921
2 minutes
20
Thyroid cancer (TC) represents the most common malignancy of the endocrine system, with an increased incidence across continents attributable to both improvement of diagnostic procedures and environmental factors. Among the modifiable risk factors, insulin resistance might influence the development of TC. A relationship between circadian clock machinery disfunction and TC has recently been proposed. The circadian clock machinery comprises a set of rhythmically expressed genes responsible for circadian rhythms. Perturbation of this system contributes to the development of pathological states such as cancer. Several clock genes have been found deregulated upon thyroid nodule malignant transformation. The molecular mechanisms linking circadian clock disruption and TC are still unknown but could include insulin resistance. Circadian misalignment occurring during shift work, jet lag, high fat food intake, is associated with increased insulin resistance. This metabolic alteration, in turn, is associated with a well-known risk factor for TC i.e., hyperthyrotropinemia, which could also be induced by sleep disturbances. In this review, we describe the mechanisms controlling the circadian clock function and its involvement in the cell cycle, stemness and cancer. Moreover, we discuss the evidence supporting the link between circadian clockwork disruption and TC development/progression, highlighting its potential implications for TC prevention, diagnosis and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690860 | PMC |
http://dx.doi.org/10.3390/cancers12113109 | DOI Listing |
eNeuro
September 2025
Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210.
Cancer patients experience circadian rhythm disruptions during and after chemotherapy that can contribute to debilitating side effects. It is unknown how chemotherapy mediates circadian disruptions, and specifically the extent to which these disruptions occur at the level of the principal clock, the suprachiasmatic nuclei (SCN) of the hypothalamus. In the present study, we assessed how the commonly used chemotherapeutic, paclitaxel, impacts the SCN molecular clock and SCN-dependent behavioral adaptations to circadian challenges in female mice.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDFR Soc Open Sci
September 2025
Department of Genetics and Development, University of Geneva, Geneva, Switzerland.
has been a pioneering model system for investigations into the genetic bases of behaviour. Studies of circadian activity were some of the first behaviours investigated in flies. The Activity Monitoring (DAM) system by TriKinetics played a key role in establishing the fundamental feedback loop of the circadian clock.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.
The circadian clock in the suprachiasmatic nucleus and peripheral tissues functions to regulate key physiological and cellular systems in a cycle approximating 24 h. Understanding the ontogeny of the circadian clock mechanism during mammalian development is incomplete. Accordingly, we used the mouse as a model and a previously published RNAseq dataset to determine when expression of core genes regulating the circadian clock increase in transcript abundance in fetal and postnatal brain, heart, liver, and kidney.
View Article and Find Full Text PDFNPJ Biol Timing Sleep
September 2025
Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
The retinal photopigment melanopsin is also expressed in subcutaneous white adipose tissue (scWAT). Through melanopsin, light can modulate scWAT metabolism, but its impact on circadian phase is unclear. In vitro exposure of murine scWAT to bright light at different times over 24 h did not elicit phase shifts, unlike the response to corticosterone.
View Article and Find Full Text PDF