Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To identify this increasingly common pathology, known as multiple myeloma (MM), it is necessary to refer to the specific factors that characterize it; to this end, the classic criteria known as CRAB (hyperkalemia, renal failure, anemia, and lytic lesions) are available, in which renal failure is one of the most frequent complications. Recently, three indisputable biomarkers have been described for the diagnostic support for MM, which are: more than 10% of clonal plasma cells in bone marrow or, a biopsy that corroborates the presence of a plasmacytoma, light chain ratio ≥ 100 mg/dL and more than one focal lesion on magnetic resonance imaging. A differential diagnosis for plasma cell leukemia, solitary bone plasmacytoma, and extramedullary plasmacytoma should always be considered. Being this an incurable disease, a lot of research has been done regarding its therapeutic management, whose main objective is the disappearance of plasma cells and the patient clinical improvement. Melphalan was the first drug that showed a benefit in 1958 and afterward, with the addition of a steroid as a second drug, it was possible to improve response rates. Subsequently, different molecules were studied, forming multiple combinations, and achieving better rates of overall survival and progression-free survival. Years later, with the arrival of proteasome inhibitors such as bortezomib, and immunomodulators such as thalidomide and lenalidomide, an important turnaround in the disease has been seen, as deeper responses, more prolonged remissions, and improvement in the quality of life of patients have been achieved. This consensus has the purpose of integrating a group of Mexican specialists and promoting the updating of this pathology.

Download full-text PDF

Source
http://dx.doi.org/10.24875/GMM.M20000393DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
8
renal failure
8
plasma cells
8
mexican concensus
4
concensus multiple
4
myeloma identify
4
identify increasingly
4
increasingly common
4
common pathology
4
pathology multiple
4

Similar Publications

Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).

View Article and Find Full Text PDF

Cereblon upregulation overcomes thalidomide resistance in multiple myeloma through mitochondrial functional reprogramming.

BMB Rep

September 2025

Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Center, Inje University, Busan 47392, Korea; Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, K

Patients with multiple myeloma develop resistance to thalidomide during therapy, and the mechanisms to counteract thalidomide resistance remain elusive. Here, we explored the interaction between cereblon and mitochondrial function to mitigate thalidomide resistance in multiple myeloma. Measurements of cell viability, ATP production, mitochondrial membrane potential, mitochondrial ROS, and protein expression via western blotting were conducted in vitro using KSM20 and KMS26 cells to assess the impact of thalidomide on multiple myeloma.

View Article and Find Full Text PDF

Angiogenesis in Multiple Myeloma: 25 Years of Research in This Field.

Eur J Haematol

September 2025

Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy.

In 1994, Vacca, Ribatti, and colleagues demonstrated for the first time that bone marrow microvascular density was significantly increased in multiple myeloma (MM) compared to monoclonal gammopathies of undetermined significance (MGUS) and moreover in active vs. non-active forms. Starting from 1994, the aim of this review article is to summarize the most important acquisitions in the literature concerning the role of angiogenesis in MM progression and the possibility to use anti-angiogenic drugs in its treatment.

View Article and Find Full Text PDF

Advances in NK cell therapy for multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China. Electronic address:

Multiple myeloma (MM) is a malignant disease in which clonal plasma cells proliferate abnormally. In patients with MM, the number and function of NK cells are suppressed, resulting in reduced immune surveillance and clearance of myeloma cells. Restoring or enhancing the killing effect of NK cells on myeloma cells is an important strategy for MM immunotherapy.

View Article and Find Full Text PDF

Adoptive cellular therapies in multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:

Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.

View Article and Find Full Text PDF