Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is necessary to identify suitable alternative crops to ensure the nutritional demands of a growing global population. The genome of Moringa oleifera, a fast-growing drought-tolerant orphan crop with highly valuable agronomical, nutritional and pharmaceutical properties, has recently been reported. We model here gene family evolution in Moringa as compared with ten other flowering plant species. Despite the reduced number of genes in the compact Moringa genome, 101 gene families, grouping 957 genes, were found as significantly expanded. Expanded families were highly enriched for chloroplastidic and photosynthetic functions. Indeed, almost half of the genes belonging to Moringa expanded families grouped with their Arabidopsis thaliana plastid encoded orthologs. Microsynteny analysis together with modeling the distribution of synonymous substitutions rates, supported most plastid duplicated genes originated recently through a burst of simultaneous insertions of large regions of plastid DNA into the nuclear genome. These, together with abundant short insertions of plastid DNA, contributed to the occurrence of massive amounts of plastid DNA in the Moringa nuclear genome, representing 4.71%, the largest reported so far. Our study provides key genetic resources for future breeding programs and highlights the potential of plastid DNA to impact the structure and function of nuclear genes and genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573628PMC
http://dx.doi.org/10.1038/s41598-020-73937-wDOI Listing

Publication Analysis

Top Keywords

plastid dna
16
moringa oleifera
8
expanded families
8
nuclear genome
8
plastid
7
moringa
6
genome
5
genes
5
evolutionary analysis
4
analysis moringa
4

Similar Publications

The complete chloroplast genome of Franch. & Sav. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.

Here, we present the first complete chloroplast genome of (154,018 bp), which exhibits a typical quadripartite structure, including an LSC (83,966 bp), SSC (18,910 bp), and two IRs (25,571 bp each). A total of 133 genes were annotated, with 114 unique genes and 19 duplicated in the IRs. .

View Article and Find Full Text PDF

Kryptoperidinium belongs to a group of dinophytes hosting a diatom as an endosymbiont and is currently considered to comprise a single, putatively bloom-forming and harmful species only. Molecular phylogenetics indicate the existence of a second distinct lineage and therefore species new to science, which we here formally describe as Kryptoperidinium secundum sp. nov.

View Article and Find Full Text PDF

Repeated loss of plastid NDH during evolution of land plants.

Ann Bot

September 2025

Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.

Background: Advances in DNA sequencing technology have led to a rapid increase in the number of species with organelle genomes and even complete nuclear genomes being sequenced. Thousands of plastid genomes from across all major clades of land plants are now available, and one of the surprising findings is the recurring event of complete or functional loss of genes involved in cyclic electron transport during photosynthesis - the ndh genes that encode subunits of the chloroplast NADH dehydrogenase-like (NDH) complex. Gene loss in non-photosynthetic, heterotrophic plants may be expected, but the increasing number of losses being discovered in autotrophic plants questions the role and potential dispensability of the ndh genes and the entire NDH complex.

View Article and Find Full Text PDF

Cannabis sativa L. (Cannabis) is a medicinal plant that produces and stores an abundance of therapeutic and psychoactive secondary metabolites, including phytocannabinoids and terpenes, in the glandular trichomes of its female flowers. We postulate that glandular trichome productivity has been under strong artificial selection in the pursuit for ever more potent cultivars.

View Article and Find Full Text PDF

BrATG5 encoding autophagy protein was fine-mapped through MutMap and KASP analysis, and its function in regulating leaf senescence was verified using virus-induced gene silencing and functional complementation assays in Chinese cabbage. Leaf senescence is the final stage of leaf development, and is accompanied by the breakdown of organelle and catabolism of chlorophyll and macromolecules. The generated nutrients are supplied to developing seeds or other growing organs.

View Article and Find Full Text PDF