Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semi-Supervised Learning (SSL)is an approach to machine learning that makes use of unlabeled data for training with a small amount of labeled data. In the context of molecular biology and pharmacology, one can take advantage of unlabeled data. For instance, to identify drugs and targets where a few genes are known to be associated with a specific target for drugs and considered as labeled data. Labeling the genes requires laboratory verification and validation. This process is usually very time consuming and expensive. Thus, it is useful to estimate the functional role of drugs from unlabeled data using computational methods. To develop such a model, we used openly available data resources to create (i)drugs and genes, (ii)genes and disease, bipartite graphs. We constructed the genetic embedding graph from the two bipartite graphs using Tensor Factorization methods. We integrated the genetic embedding graph with the publicly available protein functional association network. Our results show the usefulness of the integration by effectively predicting drug labels.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2020.3031696DOI Listing

Publication Analysis

Top Keywords

unlabeled data
12
protein functional
8
functional association
8
labeled data
8
bipartite graphs
8
genetic embedding
8
embedding graph
8
data
6
synergy embedding
4
embedding protein
4

Similar Publications

CrossNeXt: ConvNeXt-based cross-teaching with entropy minimization for semi-supervised liver segmentation from abdominal MRI.

Comput Med Imaging Graph

August 2025

Academy for Engineering and Technology, Fudan University, Shanghai, 200433, People's Republic of China; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China; Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases,

Recent advancements in artificial intelligence have significantly enhanced the efficiency of abdominal MRI segmentation, thereby improving the screening and diagnosis of liver diseases. However, accurate precise liver segmentation in MRI remains a challenging task due to the high variability in liver morphology and the limited availability of high-quality annotated datasets. To address these challenges, this study presents an advanced semi-supervised learning framework that integrates cross-teaching with pseudo-label generation and intra-batch entropy minimization.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF

Multimodal self-supervised retinal vessel segmentation.

Neural Netw

September 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:

Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.

View Article and Find Full Text PDF

Large-scale genomics data combined with Electronic Health Records (EHRs) illuminate the path towards personalized disease management and enhanced medical interventions. However, the absence of "gold standard" disease labels makes the development of machine learning models a challenging task. Additionally, imbalances in demographic representation within datasets compromise the development of unbiased healthcare solutions.

View Article and Find Full Text PDF

The speech and language rehabilitation are essential to people who have disorders of communication that may occur due to the condition of neurological disorder, developmental delays, or bodily disabilities. With the advent of deep learning, we introduce an improved multimodal rehabilitation pipeline that incorporates audio, video, and text information in order to provide patient-tailored therapy that adapts to the patient. The technique uses a cross-attention fusion multimodal hierarchical transformer architectural model that allows it to jointly design speech acoustics as well as the facial dynamics, lip articulation, and linguistic context.

View Article and Find Full Text PDF