Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lignin, a major component of the secondary cell wall, is important for plant growth and development. Moreover, lignin plays a pivotal role in plant innate immunity. Lignin is readily deposited upon pathogen infection and functions as a physical barrier that limits the spread of pathogens. In this study, we show that an Arabidopsis MYB transcription factor MYB15 is required for the activation of lignin biosynthesis genes such as , , , , , , and , and consequently lignin formation during effector-triggered immune responses. Upon challenge with the avirulent bacterial pathogen DC3000 (), lignin deposition and disease resistance were reduced in mutant plants. Furthermore, whereas invading pathogens, together with hypersensitive cell death, were restricted to the infection site in wild-type leaves, they spread beyond the infected area in mutants. The exogenous supply of the lignin monomer coniferyl alcohol restored lignin production and rescued immune defects in plants. These results demonstrate that regulation at the transcriptional level is key to pathogen-induced lignification and that MYB15 plays a central role in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527528PMC
http://dx.doi.org/10.3389/fpls.2020.583153DOI Listing

Publication Analysis

Top Keywords

lignin
9
myb transcription
8
transcription factor
8
factor myb15
8
lignin biosynthesis
8
immunity lignin
8
arabidopsis r2r3
4
r2r3 myb
4
myb15 key
4
key regulator
4

Similar Publications

Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.

View Article and Find Full Text PDF

This article presents an advanced iteration of the polyoxometalate (POM)-Ionosolv concept to generate biobased methyl formate in high yield and a bleached cellulose pulp from lignocellulosic biomass in a single-step operation by using redox-balanced POM catalysts and molecular oxygen in alcoholic ionic liquid (IL) mixtures. The performance of the three Ionosolv-ILs triethylammonium hydrogen sulfate ([TEA][HSO]), N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), and tributylmethylphosphonium methyl sulfate ([TBMP][MeSO]), mixed with methanol (MeOH) (30/70 wt%), is evaluated by methyl formate yield from extracted hemicellulose and lignin as well as purity of the bleached cellulose pulp in the presence of various Keggin-type POMs. The redox-balanced HPVMnMoO POM catalyst in [TBMP][MeSO]/MeOH emerge as the most effective combination, achieving 20% methyl formate yield from commercial beech wood.

View Article and Find Full Text PDF

Physicochemical, polymeric and microbial modifications of wood toward advanced functional applications: a review.

Chem Soc Rev

September 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

As concern for environmental sustainability continues to grow, wood, as a renewable resource and a composite of natural polymers (cellulose, hemicellulose, and lignin), has garnered increasing research attention. Traditional wood may have certain limitations in specific applications, such as being susceptible to moisture and biological degradation, as well as shortcomings in strength and durability. Therefore, wood modification has become a crucial strategy to enhance its performance and broaden its range of applications.

View Article and Find Full Text PDF

Extracting soluble lignin from poplar sawdust via ternary cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment for the fabrication of biodegradable films.

Int J Biol Macromol

September 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.. Electronic address:

The multi-component deep eutectic solvents (DES) have emerged as indispensable tools in the lignocellulosic pretreatment process, facilitating the efficient biotransformation of biomass sugars into valuable products. In this investigation, FeCl was ingeniously incorporated to amplify the pretreatment efficacy of a DES synthesized from cetyltrimethylammonium bromide (CTAB) and lactic acid (LA), specifically targeting poplar sawdust (PS). Remarkably, under the meticulously optimized molar ratio of 1: 4:1, this innovative ternary DES achieved an unprecedented removal of 68.

View Article and Find Full Text PDF

Lignin-intercalated WS with synergistic adsorption for efficiency lead removal.

Bioresour Technol

September 2025

School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Zibo Engineering Research Center for Bio-based New Materials, Zibo 255000, China. Electronic address:

Tungsten disulfide (WS), a two-dimensional adsorbent material, has garnered great attention in removing lead ions (Pb) from water due to their extensive exposed adsorption sites. However, WS nanosheets inevitably agglomerated and stacked during the preparation and adsorption process, leading to reduced adsorption efficiency. Current method of enhancing WS dispersion is mainly blending with synthetic polymers, but these synthetic polymers themselves do not possess adsorption properties, resulting adsorption effect enhancement poorly.

View Article and Find Full Text PDF