98%
921
2 minutes
20
Magnesium oxide remained interesting from long time for several important phenomena like; defect induced magnetism, spin electron reflectivity, broad laser emission etc. Moreover, nanostructures of this material exhibited suitability for different kinds of applications ranging from wastewater treatment to spintronics depending upon their shape and size. In this way, researchers had grown nanostructures in the form of nanoparticles, thin films, nanotubes, nanowalls, nanobelts. Though nanoparticles and thin films are well known form of nanostructures and wide variety of synthesis approaches are available, however, limited methodology for other nanostructures are available. In order to grow these nanostructures in an optimized way an understanding of these methods is essential. Thus, this review article depicts an overview of various approaches for design of different kinds of nanostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527648 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e04882 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.
Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.
View Article and Find Full Text PDFIEEE Nanotechnol Mater Devices Conf
October 2024
Utah State University, Logan, UT 84322 USA.
Extinction in thin polymer films containing nanoparticles is important to photovoltaics, sensors, and interconnects. Extinction measured in 1-millimeter-thin films containing plasmonic nanoparticles increased with nanoparticle density to levels higher than predicted. Yet, enhancement of extinction was not measured in <100-nanometer-thin films containing high-density plasmonic nanoparticles.
View Article and Find Full Text PDFDrug Dev Res
September 2025
School of Pharmacy, The University of Jordan, Amman, Jordan.
Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Core Manufacturing Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
The direct deposition of piezoelectric ceramic thin films onto metal foils has become a significant challenge due to the increasing demand for embedded decoupling capacitors, nanogenerators, and flexible piezo-sensors. However, traditional thermal sintering (TS) methods present several issues for metal foils, including alterations in mechanical properties, the formation of wrinkles, and the need for precise control over the sintering atmosphere to prevent oxidation. In this study, we successfully crystallized BaTiO on a Ni foil under atmospheric conditions, mitigating thermal damage to the foil through a hybrid-solution-incorporated photoassisted chemical solution deposition (HS-PCSD) method.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, China. Electronic address:
Background: The excessive use of pesticide pollutants in agricultural production seriously threatens food safety. Traditional detection techniques are difficult to meet the detection requirements due to the complex sample pretreatment and high detection costs. The immunochromatography method (ICA) is simple to operate and fast, and is suitable for on-site rapid detection.
View Article and Find Full Text PDF