Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Continuous observation of muscle activity could provide a comprehensive picture of the loads experienced by muscles and joints during daily life. However, a major limitation to the practical application of this approach is the need to have surface electromyography (sEMG) sensors on all involved muscles. In this work, we model the synergistic relationship between muscles as a Gaussian process enabling the inference of unmeasured muscle excitations using a subset of measured data. Specifically, we developed a model for a single subject which uses sEMG data from four leg muscles to estimate the muscle excitation time-series of six other leg muscles during level walking at a self-selected speed. The proposed technique was able to accurately estimate the held-out muscle excitation time-series of the six muscles with correlation coefficients ranging from 0.74 to 0.87 and with mean absolute error less than 3%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC44109.2020.9176232DOI Listing

Publication Analysis

Top Keywords

gaussian process
8
unmeasured muscle
8
muscle excitations
8
leg muscles
8
muscle excitation
8
excitation time-series
8
muscles
6
muscle
5
modeling muscle
4
muscle synergies
4

Similar Publications

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Introduction: The discrepancies in near-soil-surface hydrologic processes triggered by herbage spatial distribution pattern greatly influence the variation in hillslope erosion process. However, knowledge about the influence of herbage spatial distribution pattern on hillslope erosion is still limited.

Methods: In the current study, runoff plots (length × width × depth, 2 × 1 × 0.

View Article and Find Full Text PDF

Background: Radiotherapy workflows conventionally deliver one treatment plan multiple times throughout the treatment course. Non-coplanar techniques with beam angle optimization or dosimetrically optimized pathfinding (DOP) exploit additional degrees of freedom to improve spatial conformality of the dose distribution compared to widely used techniques like volumetric-modulated arc therapy (VMAT). The temporal dimension of dose delivery can be exploited using multiple plans (sub-plans) within one treatment course.

View Article and Find Full Text PDF

High-throughput phytoplankton monitoring and screening of harmful and bloom-forming algae in coastal waters with updated functional screening database.

Mar Pollut Bull

September 2025

Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:

Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.

View Article and Find Full Text PDF