98%
921
2 minutes
20
Nutrients excreted from animals affect the nutritive value of manure as a soil amendment as well as the composition of gases emitted from manure storage facilities. There is a dearth of information, however, on how diet type in combination with dietary particle size affects nutrients deposited into manure storage facilities and how this affects manure composition and gas emissions. To fill this knowledge gap, an animal feeding trial was performed to evaluate potential interactive effects between feed particle size and diet composition on manure characteristics and manure-derived gaseous emissions. Forty-eight finishing pigs housed in individual metabolism crates that allowed for daily collection of urine and feces were fed diets differing in fiber content and particle size. Urine and feces were collected and stored in 446-L stainless steel containers for 49 d. There were no interactive effects between diet composition and feed particle size on any manure or gas emission parameter measured. In general, diets higher in fiber content increased manure nitrogen (N), carbon (C), and total volatile fatty acid (VFA) concentrations and increased manure VFA emissions but decreased manure ammonia emissions. Decreasing the particle size of the diet lowered manure N, C, VFAs, phenolics, and indole concentrations and decreased manure emissions of total VFAs. Neither diet composition nor particle size affected manure greenhouse gas emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20112 | DOI Listing |
J Drug Target
September 2025
Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, INDIA.
Natural phytoconstituents such as betanin and curcumin have attracted interest for their significant antioxidant and anti-inflammatory properties. Their therapeutic efficacy is notably constrained by inadequate bioavailability and reduced skin permeability. The current study developed an ethosome-based gel system for the delivery of betanin and curcumin, with the objective of improving transdermal penetration and providing sustained anti-inflammatory effects.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2025
Turkish Accelerator and Radiation Laboratory, 06830 Ankara, Türkiye.
Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.