A fluorescent supramolecular gel and its application in the ultrasensitive detection of CN by anion-π interactions.

Soft Matter

Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. China. w

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supramolecular gels have been widely reported on account of their unique superiority and application prospects. In this work, we constructed a novel supramolecular gel (HD-G) by using hydroxy-naphthaldehyde decorated with naphthalimide in DMSO solution, which exhibited excellent selectivity and ultrasensitive sensing properties toward CN (the lowest detection limit is 1.82 × 10 M). The sensing mechanism of this supramolecular gel takes advantage of π-π stacking interactions and anion-π interactions, which is different from the other familiar methods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01392gDOI Listing

Publication Analysis

Top Keywords

supramolecular gel
12
anion-π interactions
8
fluorescent supramolecular
4
gel application
4
application ultrasensitive
4
ultrasensitive detection
4
detection anion-π
4
interactions supramolecular
4
supramolecular gels
4
gels reported
4

Similar Publications

Background: Breast-conserving surgery (BCS) is the primary surgical approach for patients with breast cancer. The accurate determination of surgical margins during BCS is critical for patient prognosis; however, time constraints and limitations in current pathological techniques often prevent pathologists from performing this assessment intraoperatively. The inability to reliably assess margins during surgery can lead to incomplete tumor removal and the need for additional surgeries.

View Article and Find Full Text PDF

Sustained release of dual p38 inhibitors via supramolecular hydrogels to enhance cardiac repair after MI/R injury.

Biomaterials

August 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hef

Activation of p38 mitogen-activated protein kinase plays an important role in the progression of ventricular muscle inflammation after myocardial ischemia-reperfusion (MI/R). The inhibition of p38 activation in ischemic myocardium can reduce ventricular muscle remodeling post-MI. However, owing to the dynamic change of p38 in ischemic myocardium after MI, the clinical therapeutic effect of p38 inhibitors is insufficient.

View Article and Find Full Text PDF

High-dose ascorbic acid (AA) therapy induces cancer cell death primarily through its oxidized derivative, dehydroascorbic acid (DHA). However, maintaining therapeutic AA concentrations within tumors and overcoming intratumoral hypoxia pose critical barriers to the clinical application of AA. Herein, we develop an injectable supramolecular gel (αPD-1@Lv/HPAGel) composed of ascorbyl palmitate (an AA derivative), lovastatin-loaded hemoglobin nanoparticles (Lv/Hb-PDA), and the immune checkpoint inhibitor anti-PD-1 (αPD-1).

View Article and Find Full Text PDF

Traditional petroleum engineering materials have problems such as single functionality and poor environmental adaptability in terms of lost circulation control and enhanced oil recovery. Supramolecular gels, with their dynamic reversible non-covalent network structure, demonstrate unique advantages in this regard. This paper classifies supramolecular gels into hydrogen bond type, metal coordination type, host-guest type, and electrostatic interaction type based on differences in crosslinking structures.

View Article and Find Full Text PDF

Supramolecular gels hold immense potential in materials science, particularly in the development of functional materials for optoelectronics, sensors, and soft robotics. Their tunable mechanical properties and hierarchical self-assembly facilitate precise control over material structures and functions. Herein, we present a comprehensive study of the photophysical and mechanical properties of a supramolecular gel derived from a bisterpyridine ligand.

View Article and Find Full Text PDF