Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Estimation of muscle excitations from a reduced sensor array could greatly improve current techniques in remote patient monitoring. Such an approach could allow continuous monitoring of clinically relevant biomechanical variables that are ideal for personalizing rehabilitation. In this paper, we introduce the notion of a muscle synergy function which describes the synergistic relationship between a subset of muscles. We develop from first principles an approximation to their behavior using Gaussian process regression and demonstrate the utility of the technique for estimating the excitation time-series of leg muscles during normal walking for nine healthy subjects. Specifically, excitations for six muscles were estimated using surface electromyography (sEMG) data during a finite time interval (called the input window) from four different muscles (called the input muscles) with mean absolute error (MAE) less than 5.0% of the maximum voluntary contraction (MVC) and that accounts for 82-88% of the variance (VAF) in the true excitations. Further, these estimated excitations informed muscle activations with less than 4.0% MAE and 89-93% VAF. We also present a detailed analysis of a number of different modeling choices, including every possible combination of four-, three- and two-muscle input sets, the size and structure of the input window, and the stationarity of the Gaussian process covariance functions. Further, application specific modifications for future use are discussed. The proposed technique lays a foundation to explore the use of reduced wearable sensor arrays and muscle synergy functions for monitoring clinically relevant biomechanics during daily life.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2020.3028052DOI Listing

Publication Analysis

Top Keywords

gaussian process
12
muscle synergy
12
synergy functions
8
muscle excitations
8
monitoring clinically
8
clinically relevant
8
called input
8
input window
8
muscle
6
excitations
5

Similar Publications

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Introduction: The discrepancies in near-soil-surface hydrologic processes triggered by herbage spatial distribution pattern greatly influence the variation in hillslope erosion process. However, knowledge about the influence of herbage spatial distribution pattern on hillslope erosion is still limited.

Methods: In the current study, runoff plots (length × width × depth, 2 × 1 × 0.

View Article and Find Full Text PDF

Background: Radiotherapy workflows conventionally deliver one treatment plan multiple times throughout the treatment course. Non-coplanar techniques with beam angle optimization or dosimetrically optimized pathfinding (DOP) exploit additional degrees of freedom to improve spatial conformality of the dose distribution compared to widely used techniques like volumetric-modulated arc therapy (VMAT). The temporal dimension of dose delivery can be exploited using multiple plans (sub-plans) within one treatment course.

View Article and Find Full Text PDF

High-throughput phytoplankton monitoring and screening of harmful and bloom-forming algae in coastal waters with updated functional screening database.

Mar Pollut Bull

September 2025

Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:

Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.

View Article and Find Full Text PDF