Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The toxin-antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site. The antitoxin HigA directly binds the toxin HigB, rendering the HigBA complex catalytically inactive. The existing biochemical and structural studies had revealed that the HigBA complex forms a heterotetrameric assembly via dimerization of HigA antitoxin. Here, we report a high-resolution crystal structure of E. coli HigBA complex that revealed a well-ordered DNA binding domain in HigA antitoxin. Using SEC-MALS and ITC methods, we have determined the stoichiometry of complex formation between HigBA and a 33 bp DNA and report that HigBA complex as well as HigA homodimer bind to the palindromic DNA sequence with nano molar affinity. Using E. coli growth assays, we have probed the roles of key, putative active site residues in HigB. Spectroscopic methods (CD and NMR) and molecular dynamics simulations study revealed intrinsic dynamic in antitoxin in HigBA complex, which may explain the large conformational changes in HigA homodimer in free and HigBA complexes observed previously. We also report a truncated, heterodimeric form of HigBA complex that revealed possible cleavage sites in HigBA complex, which can have implications for its cellular functions.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20200363DOI Listing

Publication Analysis

Top Keywords

higba complex
32
coli higba
12
higba
11
complex
10
structure coli
8
toxin higb
8
higa antitoxin
8
complex revealed
8
higa homodimer
8
antitoxin
6

Similar Publications

Bacterial toxin-antitoxin (TA) systems are genetic modules consisting of two genes, one of which codes for a toxin (usually a protein) that is toxic to the host cell in its free form and the other an antidote of toxin, i.e., antitoxin, which may be an RNA or a protein.

View Article and Find Full Text PDF

Pseudomonas aeruginosa two-component system CprRS regulates HigBA expression and bacterial cytotoxicity in response to LL-37 stress.

PLoS Pathog

January 2024

Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P.

View Article and Find Full Text PDF

Type II toxin-antitoxin (TA) systems modulate many essential cellular processes in prokaryotic organisms. Recent studies indicate certain type II antitoxins also transcriptionally regulate other genes, besides neutralizing toxin activity. Herein, we investigated the diverse transcriptional repression properties of type II TA antitoxin PaHigA from Pseudomonas aeruginosa.

View Article and Find Full Text PDF

The toxin-antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems regulate key cellular functions in bacteria. Here, we report a unique structure of the Streptococcus pneumoniae HigBA system and a novel antimicrobial agent that activates HigB toxin, which results in mRNA degradation as an antibacterial strategy. In this study, protein structure-based peptides were designed and successfully penetrated the S.

View Article and Find Full Text PDF