Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study aimed to evaluate the impact of rapid genetic testing (RGT) for BRCA1 and BRCA2 at the time of breast cancer diagnosis on treatment choices. Bilateral mastectomy for the treatment of breast cancer in women with a BRCA1 or BRCA2 mutation offers a reduction in the risk of contralateral breast cancer. It is unclear whether offering RGT at the time of breast cancer diagnosis has an impact on women's surgical decision-making.

Methods: Women with breast cancer diagnosed between June 2013 and May 2018 were recruited from four academic health sciences centers in Toronto, Canada. The participants completed a questionnaire before genetic testing, then one week and one year after disclosure of the genetic test result. Before surgery, RGT was performed. Diagnostic, pathologic, and treatment data were compared between those with and those without a BRCA mutation.

Results: The study enrolled 1007 women who consented to RGT. The mean age of the participants was 46.3 years, and the median time to result disclosure was 10 days. A BRCA mutation was found in 6% of the women. The women with a BRCA mutation were significantly more likely to elect for bilateral mastectomy than the women without a BRCA mutation (p < 0.0001). Of the BRCA-positive patients, 95.7% reported that they used their genetic test result to make a surgical decision.

Conclusions: The women provided with RGT at the time of breast cancer diagnosis use the genetic information to make treatment decisions, and the majority of those identified with a BRCA mutation elect for a bilateral mastectomy.

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-020-09160-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
genetic testing
12
brca1 brca2
12
time breast
12
cancer diagnosis
12
brca mutation
12
rapid genetic
8
bilateral mastectomy
8
women brca
8
breast
6

Similar Publications

Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.

Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.

View Article and Find Full Text PDF

PRMT1-Mediated PARP1 Methylation Drives Lung Metastasis and Chemoresistance via P65 Activation in Triple-Negative Breast Cancer.

Research (Wash D C)

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF