Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article aimed to demonstrate solution hospital wastewater due to more consumption of antibiotics, public concern has been significantly increased for usage, fates and occurrences of these emerging compounds in the environments and biota. Therefore, it does need more discoveries about occurrences and new treatment methods. Since the conventional treatment methods are low efficient on antibiotics, integration and combination of biological systems together or with an additional process has been shown that provided a better result. However, here, the potential of a full scale combined treating system with activated sludge-scoria biofilter (ASSB) was investigated for removal of ceftriaxone (CEF) and amoxicillin (AMX). To determine the potential biodegradability of proposed system, the solid-water distribution coefficient (K) was calculated. Overally, 118 samples were collected from three points; wastewater entering, exiting the activated sludge, and exiting the biofilter. To determine the amount of CEF and AMX antibiotics, the samples were analyzed using HPLC-UV. The results showed that the activated sludge system were able to eliminate the AMX and CEF antibiotics about 70.36 and 84.49%, respectively. In compare to activated sludge, the average mean of ASSB system for the removal efficiency were 87.53% (for AMX) and 93.17% (for CEF), respectively. As a result, it can be found that the efficiency of the combined activated sludge-biofilter system in removing of the low levels of antibiotics was more than individual activated system. The result of K revealed that AMX (with a K about 0.172) has lower tendency to biomass rather than CEF (with a K about 0.512). The ecological toxicity assessment guaranteed there is no risk for fish and daphnia when the activated sludge and also ASSB effluents to be discharged into the environment even without any diluting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111098DOI Listing

Publication Analysis

Top Keywords

activated sludge
20
activated
8
hospital wastewater
8
treatment methods
8
system
6
sludge
5
antibiotics
5
cef
5
amx
5
hybrid system
4

Similar Publications

Treatment of non-sterile biogas slurry from a pig farm using microalgae isolated from the activated sludge of sewage plants.

Microbiol Spectr

September 2025

Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.

View Article and Find Full Text PDF

Activation of peroxymonosulfate by Fenton-conditioned sludge-derived biochar for efficient degradation and detoxification of sulfamethoxazole: Reactive oxygen species dominated process.

Environ Res

September 2025

School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho

The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Characterization and Antimicrobial Efficacy of a Bacteriophage Targeting Multidrug-Resistant .

ACS Infect Dis

September 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.

View Article and Find Full Text PDF

Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.

View Article and Find Full Text PDF

Concentration-specific effects of micropollutants on microbial communities and antibiotic resistance genes in activated sludge systems.

J Hazard Mater

August 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.

View Article and Find Full Text PDF