98%
921
2 minutes
20
Azine-containing biaryls are ubiquitous scaffolds in many areas of chemistry, and efficient methods for their synthesis are continually desired. Pyridine rings are prominent amongst these motifs. Transition-metal-catalysed cross-coupling reactions have been widely used for their synthesis and functionalisation as they often provide a swift and tuneable route to related biaryl scaffolds. However, 2-pyridine organometallics are capricious coupling partners and 2-pyridyl boron reagents in particular are notorious for their instability and poor reactivity in Suzuki-Miyaura cross-coupling reactions. The synthesis of pyridine-containing biaryls is therefore limited, and methods for the formation of unsymmetrical 2,2'-bis-pyridines are scarce. This Review focuses on the methods developed for the challenging coupling of 2-pyridine nucleophiles with (hetero)aryl electrophiles, and ranges from traditional cross-coupling processes to alternative nucleophilic reagents and novel main group approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246887 | PMC |
http://dx.doi.org/10.1002/anie.202010631 | DOI Listing |
Chem Commun (Camb)
September 2025
College of Chemistry, Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450052, P. R. China.
A visible-light-catalyzed three-component cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes is developed to build a series of 3-(2,2,2-trifluoroethyl)-3-indoles. This protocol features mild reaction conditions using an 18 W blue LED as the light source at room temperature. The desired 3-indole products can be successfully transformed into valuable tetrahydroindole scaffolds through either reduction or cross-coupling reactions.
View Article and Find Full Text PDFJ Org Chem
September 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
A palladium-catalyzed cascade coupling/retro-Claisen reaction of CF-substituted β-diketones with readily available -difluorocyclopropanes has been developed. This methodology allows for the expedient synthesis of γ-fluorinated γ,δ-unsaturated ketones in a one-pot procedure with a broad scope and good to excellent yields.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.
Alternating current (AC) electrolysis offers a promising strategy for modulating redox states in metal-catalyzed reactions, yet its mechanistic basis remains poorly understood. Here, we uncover how AC frequency synchronizes with key steps in a Ni-catalyzed cross-coupling cycle to control product selectivity between C-N and C-C coupling. We show that optimal C-N selectivity arises from minimizing the exposure of a key intermediate, Ni(Ar)Br, to reducing conditions that otherwise promote off-cycle Ni species and undesired C-C homocoupling.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.
A novel copper-catalyzed radical cross-coupling reaction for the thioesterification of polyfluoroarenes is developed using KS and aldehydes in water. This protocol employs a readily available KS as a sulfur source, eliminating the need for hazardous thiols and organic solvents. The mild reaction conditions are compatible with a wide range of functional groups, providing access to diverse polyfluoroaryl thioesters.
View Article and Find Full Text PDFChemSusChem
September 2025
Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.
The palladium-catalyzed Suzuki-Miyaura cross coupling reaction to forge carbon-carbon bonds fundamentally changes the practice of organic synthesis. Herein an isolated palladium catalyst supported on polymeric carbon nitride (Pd/PCN) for efficient cross coupling of bromobenzene and phenylboronic acid at room temperature is reported. It is demonstrated that the Pd/PCN catalyst with a 2 wt% Pd loading achieves the highest mole-specific activity.
View Article and Find Full Text PDF