98%
921
2 minutes
20
Apple polyphenols have been studied for various beneficial bioactivities. Especially interesting are traditional, old varieties of apples for which some initial studies have suggested significant bioactivities, but they are still not completely understood. Polyphenol bioactivities can be affected by interactions with dietary fibers such as β-glucans. The aim of this study was to investigate for the first time interactions between individual polyphenols from traditional, old apple varieties ("Božićnica" and "Batulenka") and β-glucans by studying the adsorption process. Polyphenols were extracted from the peel and flesh of traditional apples by using an ultrasonic bath and characterized with high-performance liquid chromatography. The amounts of adsorbed () and un-adsorbed () polyphenols were modeled with adsorption isotherms (Langmuir, Dubinin-Radushkevich, and Hill) by using improved non-linear fitting in a novel R algorithm, developed specifically for the modeling of adsorption isotherms. Polyphenols adsorbed onto β-glucan from 9 to 203 (peel, "Božićnica"), 1 to 484 (peel, "Batulenka"), 5 to 160 (flesh, "Božićnica"), and 19 to 28 mg g (flesh, "Batulenka"). The adsorption was concentration dependent (polyphenols present in higher amount adsorbed in higher amounts). Physical sorption can be suggested. Polyphenols from traditional apples adsorb onto β-glucan and should be further studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556014 | PMC |
http://dx.doi.org/10.3390/foods9091278 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.
Natural products have emerged as a vital source of active ingredients in medicine, food, and cosmetics due to their unique biological activities, safety profiles, and sustainability. However, most bioactive compounds in natural products are intensely bitter, limiting their use in pharmaceuticals and foods. The bitter taste attributes vary markedly among different compound classes, predominantly due to their structural characteristics.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.
Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Delivering therapeutics across the blood-brain barrier (BBB) remains a major challenge in ischemic stroke therapy. Ischemic stroke induces upregulation of various inflammatory membrane receptors on brain endothelial cells, offering potential entry points for receptor-mediated transcytosis. This study proposes a universal targeting strategy by employing inflammatory pathway antagonists as targeting ligands, which broadens the spectrum of available ligands beyond traditional receptor-binding molecules.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a naturally occurring polyphenol molecule. It is lipophilic and has demonstrated and therapeutic effects through multiple pathways. Extensive studies on its pharmacological properties have shown its anti-inflammatory, antioxidant, antinociceptive, antimicrobial, antiparasitic, antimalarial, and wound-healing properties.
View Article and Find Full Text PDFIn Silico Pharmacol
September 2025
Medical Sciences Research Center, Ghalib University, Kabul, Afghanistan.
Unlabelled: The rise of β-lactamase-mediated resistance in Gram-negative pathogens has created an urgent need for novel inhibitors to preserve antibiotic efficacy. This study explores the potential of curcumin, a natural polyphenol with known antimicrobial properties, as a broad-spectrum inhibitor of class A serine-β-lactamases (SBLs) through comprehensive computational analysis. Using molecular docking, 200 ns molecular dynamics simulations, and binding energy calculations, we investigated curcumin's interactions with three clinically important SBLs: KPC-3, CTX-M-15, and L2.
View Article and Find Full Text PDF