98%
921
2 minutes
20
Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241012 | PMC |
http://dx.doi.org/10.1038/s41551-020-00607-7 | DOI Listing |
Hepatology
September 2025
Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.
Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.
View Article and Find Full Text PDFMol Pharm
September 2025
Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
Radiopharmaceutical therapy (RPT) is a therapeutic strategy that delivers radionuclides in a targeted manner to achieve precise radiation-induced killing of tumor cells. While RPT primarily induces tumor cell death through apoptosis, resistance to apoptosis has been identified as a key mechanism underlying the radioresistance. Therefore, integrating nonapoptotic cell death pathways with RPT offers a promising strategy to enhance its therapeutic efficacy.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2025
Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
Ribonucleases (RNases) represent a distinct category of nucleases that facilitate RNA degradation into smaller components. These enzymes are particularly adept at dismantling RNA strands and other materials. A promising strategy for the targeted treatment of cancer cells involves the administration of antibody-based toxic agents designed to eliminate tumor cells specifically.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua
Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.
View Article and Find Full Text PDF