Mass Spectrometry Analysis of Newly Emerging Coronavirus HCoV-19 Spike Protein and Human ACE2 Reveals Camouflaging Glycans and Unique Post-Translational Modifications.

Engineering (Beijing)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 3100

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The coronavirus disease 2019 (COVID-19) pandemic has led to worldwide efforts to understand the biological traits of the newly identified human coronavirus (HCoV-19) virus. In this mass spectrometry (MS)-based study, we reveal that out of 21 possible glycosites in the HCoV-19 spike protein (S protein), 20 are completely occupied by -glycans, predominantly of the oligomannose type. All seven glycosylation sites in human angiotensin I converting enzyme 2 (hACE2) were found to be completely occupied, mainly by complex -glycans. However, glycosylation did not directly contribute to the binding affinity between HCoV-19 S protein and hACE2. Additional post-translational modification (PTM) was identified, including multiple methylated sites in both proteins and multiple sites with hydroxylproline in hACE2. Refined structural models of HCoV-19 S protein and hACE2 were built by adding -glycan and PTMs to recently published cryogenic electron microscopy structures. The PTM and glycan maps of HCoV-19 S protein and hACE2 provide additional structural details for studying the mechanisms underlying host attachment and the immune response of HCoV-19, as well as knowledge for developing desperately needed remedies and vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456593PMC
http://dx.doi.org/10.1016/j.eng.2020.07.014DOI Listing

Publication Analysis

Top Keywords

hcov-19 protein
12
protein hace2
12
mass spectrometry
8
coronavirus hcov-19
8
hcov-19 spike
8
spike protein
8
completely occupied
8
hcov-19
7
protein
6
hace2
5

Similar Publications

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Engineering a Coiled-Coil Protein for DARPin Presentation as a Potent SARS-CoV-2 Therapeutic.

Biomacromolecules

September 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States.

The COVID-19 pandemic has demonstrated the need for rapid, flexible, and readily adaptable treatment options for future pandemic preparedness. Due to the speed at which viruses like SARS-CoV-2 mutate, the customary approach of using highly specific monoclonal antibodies as neutralization therapies is challenging, given their size, production complexity, and cost. Here, we leveraged rational protein design to create fusion proteins from small, antibody-mimetic proteins, Designed Ankyrin Repeat Proteins (DARPins) and a self-assembling hexameric coiled coil (CC-HEX).

View Article and Find Full Text PDF

Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID-19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID-19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.

View Article and Find Full Text PDF

Understanding human-virus protein-protein interactions is critical for studying molecular mechanisms driving viral infection, immune evasion, and propagation, thereby informing strategies for public health. Here, we introduce a novel multimodal deep learning framework that integrates high-confidence experimental datasets to systematically predict putative interactions between human and viral proteins. Our approach incorporates two complementary tasks: binary classification for interaction prediction and conditional sequence generation to identify interacting protein partners.

View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic had significant global public health consequences, affecting over 200 countries and regions by 2020. The development and efficacy of specific vaccines, such as the mRNA-1273 (Spikevax) vaccine developed by Moderna Inc., have substantially reduced the impact of the pandemic and mitigated its consequences.

View Article and Find Full Text PDF