Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The jabuticaba peel extract (JPE) contains bioactive compounds that regulate fat metabolism. Because the negative correlation between fat accumulation and bone formation in bone marrow, we hypothesized that JPE inhibits adipocyte as well as favors osteoblast differentiation of mesenchymal stromal cells (MSCs) under healthy and osteoporotic conditions, a disease that display an imbalance between adipocyte and osteoblast differentiation resulting in reduced bone mass.

Material And Methods: To test these hypotheses, bone marrow MSCs were harvested from healthy and osteoporotic rats and cultured in adipogenic and osteogenic media with three concentrations of JPE, 0.25, 5 and 10 µg/ml, and vehicle (control). After selecting the most efficient concentrations of JPE, we used them to evaluate adipocyte and osteoblast differentiation of MSCs from both sources.

Results: We observed that, in general, JPE inhibited adipocyte differentiation of MSCs with more pronounced effects in cells from healthy than osteoporotic rats. In addition, JPE increased osteoblast differentiation, exhibiting a slightly higher osteogenic potential on MSCs from osteoporotic compared to healthy condition.

Conclusion: Our results demonstrated that JPE drives MSCs to inhibit adipocyte differentiation and toward osteoblast differentiation under healthy and osteoporotic conditions. These findings pave the way for further translational studies to investigate the therapeutic possibilities of JPE in both prevention and treatment of osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00774-020-01152-8DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
24
healthy osteoporotic
20
adipocyte osteoblast
12
differentiation mscs
12
jabuticaba peel
8
peel extract
8
differentiation
8
mscs healthy
8
osteoporotic rats
8
jpe
8

Similar Publications

Effects of dermal-fibroblast-derived ECM and dextran sulfate supplementation on osteoblast differentiation - results of a preliminary in vitro study.

Injury

August 2025

Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:

Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.

View Article and Find Full Text PDF

The Role of EphrinB2-EphB4 Signalling Pathway in Regeneration of Inflammatory Bone Defect.

J Cell Mol Med

September 2025

Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China.

The important role of the EphrinB2-EphB4 signalling pathway in bone remodelling has been demonstrated, while its effect on inflammatory bone defect regeneration remains poorly understood. This study was to assess the effect of EphB4-EphrinB2 signalling on inflammation-mediated bone defect repair in murine models. The modelling method of inflammation-mediated bone defect in mice was established by intraperitoneally injecting different concentrations of TNF-α.

View Article and Find Full Text PDF

Lotus seed (Nelumbo nucifera) protein-derived calcium-binding peptides: Isolation, characterization, and osteogenic effect.

Int J Biol Macromol

September 2025

Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:

Natural protein-derived peptides are gaining attention for their potential in promoting health, particularly in nutraceutical formulations. In this study, calcium-binding peptides from lotus seed were produced and characterized using UV, FT-IR, Raman, and EDS, and SEM. The calcium-peptide (LSPIH-Ca) complex was subjected to its osteogenic effect in murine bone marrow-derived mesenchymal stem cells (D1 MSCs).

View Article and Find Full Text PDF

Multidimensional Regulation of Bone Marrow Niche Using Extracorporeal Shock Wave Responsive Nanocomposites for Osteoporosis Therapy.

Small

September 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

Multidimensional modulation of the bone marrow niche represents a pivotal therapeutic strategy for bone-related disorders. However, its clinical translation remains challenging due to the inherent limitations imposed by the bone physiological barrier. Herein, a bone cavity-targeted nanocomposite (ZCD) is developed that can respond to extracorporeal shock wave (ESW), enabling triaxial regulation by inhibiting adipogenic differentiation, promoting osteogenic differentiation, and suppressing osteoclast activity.

View Article and Find Full Text PDF

Royal jelly (RJ), secreted by honeybees, contains major fatty acids such as 10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), which are considered to contribute to bone metabolism. However, these fatty acids are rapidly metabolized in the liver following ingestion, resulting in 2-decenoic acid (2DA) and sebacic acid (SA), respectively. Therefore, elucidating the roles of these metabolites in bone metabolism is of considerable importance.

View Article and Find Full Text PDF