A Review of the Potential Interaction of Selenium and Iodine on Placental and Child Health.

Nutrients

School of Agriculture, Food and Wine, Waite Research Institute, and Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia.

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A healthy pregnancy is important for the growth and development of a baby. An adverse pregnancy outcome is associated with increased chronic disease risk for the mother and offspring. An optimal diet both before and during pregnancy is essential to support the health of the mother and offspring. A key mediator of the effect of maternal nutrition factors on pregnancy outcomes is the placenta. Complicated pregnancies are characterized by increased oxidative stress in the placenta. Selenium and iodine are micronutrients that are involved in oxidative stress in placental cells. To date, there has been no comprehensive review investigating the potential synergistic effect of iodine and selenium in the placenta and how maternal deficiencies may be associated with increased oxidative stress and hence adverse pregnancy outcomes. We undertook a hypothesis-generating review on selenium and iodine, to look at how they may relate to pregnancy complications through oxidative stress. We propose how they may work together to impact pregnancy and placental health and explore how deficiencies in these micronutrients during pregnancy may impact the future health of offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551633PMC
http://dx.doi.org/10.3390/nu12092678DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
selenium iodine
12
pregnancy
8
adverse pregnancy
8
associated increased
8
mother offspring
8
pregnancy outcomes
8
increased oxidative
8
review potential
4
potential interaction
4

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF