98%
921
2 minutes
20
A healthy pregnancy is important for the growth and development of a baby. An adverse pregnancy outcome is associated with increased chronic disease risk for the mother and offspring. An optimal diet both before and during pregnancy is essential to support the health of the mother and offspring. A key mediator of the effect of maternal nutrition factors on pregnancy outcomes is the placenta. Complicated pregnancies are characterized by increased oxidative stress in the placenta. Selenium and iodine are micronutrients that are involved in oxidative stress in placental cells. To date, there has been no comprehensive review investigating the potential synergistic effect of iodine and selenium in the placenta and how maternal deficiencies may be associated with increased oxidative stress and hence adverse pregnancy outcomes. We undertook a hypothesis-generating review on selenium and iodine, to look at how they may relate to pregnancy complications through oxidative stress. We propose how they may work together to impact pregnancy and placental health and explore how deficiencies in these micronutrients during pregnancy may impact the future health of offspring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7551633 | PMC |
http://dx.doi.org/10.3390/nu12092678 | DOI Listing |
ESC Heart Fail
September 2025
Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.
View Article and Find Full Text PDFNeurol Res
September 2025
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.
Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.
Mol Nutr Food Res
September 2025
Center For Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.
View Article and Find Full Text PDFBiomater Sci
September 2025
College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China.
Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDF