98%
921
2 minutes
20
Changes to Australian regulations now allow the limited addition of water to high-sugar musts pre-fermentation. In light of these changes, this study explored how water addition affects Shiraz wine composition and sensory properties. Wines were made from grapes at ≈13.5, 14.5 and 15.5° Baume. Water was added to musts from the ripest fruit by direct addition, or by using a juice substitution (run-off and replace) approach. To compare the effect of juice run-off independently, saigneé treatments were included. Wines made from the fruit that was harvested earlier generally had a lower "opacity" and higher "red fruit" aroma as the defining sensory attributes. Undiluted wines made from riper fruit had higher phenolics, and were characterised by "dark fruit" and "dried fruit" attributes, and "spice", a "brown colour" and "opacity". These attributes were accentuated in wines from the same fruit which received saigneé treatments and reduced in all of the water addition treatments. In particular, higher levels of water addition without juice substitution increased the "cooked vegetable" and "drain" attributes in the wines. This indicates possible negative effects of larger water additions, such that a low to moderate adjustment in Shiraz winemaking is suggested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554985 | PMC |
http://dx.doi.org/10.3390/foods9091193 | DOI Listing |
Crit Rev Anal Chem
September 2025
Department of Civil Engineering, Architecture and Engineering, Northeast Petroleum University, Daqing, China.
Surfactant is usually considered the key component to form microemulsion. surfactant-based microemulsion (SBME) can also be called traditional microemulsion. It has a wide range of applications.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones científicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:
Essential oils (EOs) are a promising alternative to conventional pesticides, but some challenges like high volatility, poor water solubility, and rapid degradation limit their use in Integrated Pest Management (IPM). To overcome these limitations, this study aimed to develop garlic, eucalyptus, and clove EO-based nano-emulsions (EO-NEs) in a bait treatment format through the high-pressure microfluidization technique and investigated the biological activities against Ceratitis capitata. In addition, the adverse effects of the most promising nano-emulsion were evaluated towards a non-target parasitoid Anagaspis daci.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Chemical and Veterinary Investigations Office Stuttgart, Schaflandstraße 3/2, 70736, Fellbach, Germany.
Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Obstetrics, The Second Hospital of Shandong University, Jinan, 250033, PR China. Electronic address:
Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.
View Article and Find Full Text PDF