98%
921
2 minutes
20
We present an atomistic simulation scheme for the determination of the hydration number (h) of aqueous electrolyte solutions based on the calculation of the water dipole reorientation dynamics. In this methodology, the time evolution of an aqueous electrolyte solution generated from ab initio molecular dynamics simulations is used to compute the reorientation time of different water subpopulations. The value of h is determined by considering whether the reorientation time of the water subpopulations is retarded with respect to bulk-like behavior. The application of this computational protocol to magnesium chloride (MgCl ) solutions at different concentrations (0.6-2.8 mol kg ) gives h values in excellent agreement with experimental hydration numbers obtained using GHz-to-THz dielectric relaxation spectroscopy. This methodology is attractive because it is based on a well-defined criterion for the definition of hydration number and provides a link with the molecular-level processes responsible for affecting bulk solution behavior. Analysis of the ab initio molecular dynamics trajectories using radial distribution functions, hydrogen bonding statistics, vibrational density of states, water-water hydrogen bonding lifetimes, and water dipole reorientation reveals that MgCl has a considerable influence on the hydrogen bond network compared with bulk water. These effects have been assigned to the specific strong Mg-water interaction rather than the Cl-water interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7702081 | PMC |
http://dx.doi.org/10.1002/cphc.202000498 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.
View Article and Find Full Text PDFLasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDFInorg Chem
September 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
Isovalent anion substitution has been shown to have a tremendous effect on the transport properties in lithium halide solid ionic conductors. Although sodium-ion solid state batteries based on chloride ionic conductors have recently gathered significant attention, investigations of anion substitution in sodium containing chlorides remain scarce. Here, we investigate the role of Br isoelectronic anion substitution in a perovskite-related compound with nominal composition of NaTaCl.
View Article and Find Full Text PDFDalton Trans
September 2025
Laboratory for New Ceramics, Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.
View Article and Find Full Text PDF